Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bacteria are important dimethylsulfoniopropionate producers in coastal sediments


Dimethylsulfoniopropionate (DMSP) and its catabolite dimethyl sulfide (DMS) are key marine nutrients1,2 that have roles in global sulfur cycling2, atmospheric chemistry3, signalling4,5 and, potentially, climate regulation6,7. The production of DMSP was previously thought to be an oxic and photic process that is mainly confined to the surface oceans. However, here we show that DMSP concentrations and/or rates of DMSP and DMS synthesis are higher in surface sediment from, for example, saltmarsh ponds, estuaries and the deep ocean than in the overlying seawater. A quarter of bacterial strains isolated from saltmarsh sediment produced DMSP (up to 73 mM), and we identified several previously unknown producers of DMSP. Most DMSP-producing isolates contained dsyB8, but some alphaproteobacteria, gammaproteobacteria and actinobacteria used a methionine methylation pathway independent of DsyB that was previously only associated with higher plants. These bacteria contained a methionine methyltransferase gene (mmtN)—a marker for bacterial synthesis of DMSP through this pathway. DMSP-producing bacteria and their dsyB and/or mmtN transcripts were present in all of the tested seawater samples and Tara Oceans bacterioplankton datasets, but were much more abundant in marine surface sediment. Approximately 1 × 108 bacteria g−1 of surface marine sediment are predicted to produce DMSP, and their contribution to this process should be included in future models of global DMSP production. We propose that coastal and marine sediments, which cover a large part of the Earth’s surface, are environments with high levels of DMSP and DMS productivity, and that bacteria are important producers of DMSP and DMS within these environments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DMSP synthesis in tested marine sediments.
Fig. 2: DMSP-biosynthesis pathways and bacterial production of DMSP.
Fig. 3: Maximum-likelihood phylogenetic tree of MmtN proteins.

Data availability

The 16S rRNA gene amplicon sequencing, metagenomic data and whole-genome sequences generated in this study are publicly available from the NCBI Sequence Read Archive (BioProject: PRJNA522699).


  1. Curson, A. R. J., Todd, J. D., Sullivan, M. J. & Johnston, A. W. B. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat. Rev. Microbiol. 9, 849–859 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Sievert, S. M., Kiene, R. P. & Schulz-Vogt, H. N. The sulfur cycle. Oceanography 20, 117–123 (2007).

    Article  Google Scholar 

  3. Andreae, M. O. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Mar. Chem. 30, 1–29 (1990).

    Article  CAS  Google Scholar 

  4. Seymour, J. R., Simó, R., Ahmed, T. & Stocker, R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329, 342–345 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Nevitt, G. A. The neuroecology of dimethyl sulfide: a global-climate regulator turned marine infochemical. Integr. Comp. Biol. 51, 819–825 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Stefels, J., Steinke, M., Turner, S., Malin, G. & Belviso, S. Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 83, 245–275 (2007).

    Article  CAS  Google Scholar 

  7. Vallina, S. M. & Simó, R. Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 315, 506–508 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Curson, A. R. J. et al. Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process. Nat. Microbiol. 2, 17009 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Galí, M., Devred, E., Levasseur, M., Royer, S. J. & Babin, M. A remote sensing algorithm for planktonic dimethylsulfoniopropionate (DMSP) and an analysis of global patterns. Remote Sens. Environ. 171, 171–184 (2015).

    Article  Google Scholar 

  10. van Bergeijk, S. A., Schönefeldt, K., Stal, L. J. & Huisman, J. Production and consumption of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in a diatom-dominated intertidal sediment. Mar. Ecol. Prog. Ser. 231, 37–46 (2002).

    Article  Google Scholar 

  11. Zhuang, G. C. et al. Distribution and isotopic composition of trimethylamine, dimethylsulfide and dimethylsulfoniopropionate in marine sediments. Mar. Chem. 196, 35–46 (2017).

    Article  CAS  Google Scholar 

  12. Dacey, J. W. H., King, G. M. & Wakeham, S. G. Factors controlling emission of dimethylsulfide from salt marshes. Nature 330, 643–645 (1987).

    Article  CAS  Google Scholar 

  13. Steudler, P. A. & Peterson, B. J. Contribution of gaseous sulphur from salt marshes to the global sulphur cycle. Nature 311, 455–457 (1984).

    Article  CAS  Google Scholar 

  14. Mincer, T. J., Jensen, P. R., Kauffman, C. A. & Fenical, W. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl. Environ. Microbiol. 68, 5005–5011 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Speeckaert, G., Borges, A. V., Champenois, W., Royer, C. & Gypens, N. Annual cycle of dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) related to phytoplankton succession in the Southern North Sea. Sci. Total Environ. 622–623, 362–372 (2018).

    Article  PubMed  CAS  Google Scholar 

  16. Curson, A. et al. DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. Nat. Microbiol. 3, 430–439 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Dickschat, J. S., Rabe, P. & Citron, C. A. The chemical biology of dimethylsulfoniopropionate. Org. Biomol. Chem. 13, 1954–1968 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Hanson, A. D., Rivoal, J., Paquet, L. & Cage, D. A. Biosynthesis of 3-dimethylsulfoniopropionate in Wollastonia biflora (L.) DC. Evidence that S-methylmethionine is an intermediate. Plant Physiol. 105, 103–110 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ranocha, P. et al. Characterization and functional expression of cDNAs encoding methionine-sensitive and -insensitive homocysteine S-methyltransferases from Arabidopsis. J. Biol. Chem. 275, 15962–15968 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Kocsis, M. G. et al. Dimethylsulfoniopropionate biosynthesis in Spartina alterniflora. Plant Physiol. 117, 273–281 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shapiro, S. K. Biosynthesis of methionine from homocysteine and S-methylmethionine in bacteria. J. Bacteriol. 72, 730–735 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Albers, E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5′‐methylthioadenosine. IUBMB Life 61, 1132–1142 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Liao, C. & Seebeck, F. P. In vitro reconstitution of bacterial DMSP biosynthesis. Angew. Chem. Int. Ed. 58, 3591–3594 (2019).

    Article  Google Scholar 

  24. Bourgis, F. et al. S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11, 1485–1497 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

    Article  PubMed  CAS  Google Scholar 

  26. Hobbie, J. E., Daley, R. J. & Jasper, S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 1225–1228 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Todd, J. D. et al. Molecular dissection of bacterial acrylate catabolism—unexpected links with dimethylsulfoniopropionate catabolism and dimethyl sulfide production. Environ. Microbiol. 12, 327–343 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Caddick, S. E., Harrison, C. J., Stavridou, I., Johnson, S. & Brearley, C. A. A lysine accumulation phenotype of ScIpk2Δ mutant yeast is rescued by Solanum tuberosum inositol phosphate multikinase. Biochem. J. 403, 381–389 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Franklin, D. J., Steinke, M., Young, J., Probert, I. & Malin, G. Dimethylsulphoniopropionate (DMSP), DMSP-lyase activity (DLA) and dimethylsulphide (DMS) in 10 species of coccolithophore. Mar. Ecol. Prog. Ser. 410, 13–23 (2010).

    Article  CAS  Google Scholar 

  30. Zhang, S.-H., Yang, G.-P., Zhang, H.-H. & Yang, J. Spatial variation of biogenic sulfur in the south Yellow Sea and the East China Sea during summer and its contribution to atmospheric sulfate aerosol. Sci. Total Environ. 488, 157–167 (2014).

    Article  PubMed  CAS  Google Scholar 

  31. Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962).

    Article  CAS  Google Scholar 

  32. Jones, R. D. An improved fluorescence method for the determination of nanomolar concentrations of ammonium in natural waters. Limnol. Oceanogr. Methods 36, 814–819 (1991).

    Article  CAS  Google Scholar 

  33. Armstrong, F. A. J., Stearns, C. R. & Strickland, J. D. H. The measurement of upwelling and subsequent biological process by means of the technicon autoanalyzer and associated equipment. Deep Sea Res. 14, 381–389 (1967).

    CAS  Google Scholar 

  34. Slezak, D., Kiene, R. P., Toole, D. A., Simó, R. & Kieber, D. J. Effects of solar radiation on the fate of dissolved DMSP and conversion to DMS in seawater. Aquat. Sci. 69, 377–393 (2007).

    Article  CAS  Google Scholar 

  35. Boyd, T. J. et al. in Microbial Ecology Research Trends (ed. Van Dijk, T.) Chap. 1 (Nova Science, 2008).

  36. Morris, J. T. et al. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earth’s Future 4, 110–121 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Guillard, R. R. L. & Ryther, J. H. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, 229–239 (1962).

    Article  CAS  PubMed  Google Scholar 

  38. Andersen, R. A. & Kawachi, M. in Algal Culturing Techniques (ed. Anderson, R. A.) 83–101 (Elsevier Acad. Press, 2005).

  39. Naz, T., Burhan, Z., Munir, S. & Siddiqui, P. J. A. Biovolume and biomass of common diatom species from the coastal waters of Karachi, Pakistan. Pak. J. Bot. 45, 325–328 (2013).

    Google Scholar 

  40. Yin, Q. et al. Spatial variations in microbial community composition in surface seawater from the ultra-oligotrophic center to rim of the South Pacific Gyre. PLoS ONE 8, e55148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carrión, O. et al. Methanethiol-dependent dimethylsulfide production in soil environments. ISME J. 11, 2379 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rose, T. M., Henikoff, J. G. & Henikoff, S. CODEHOP (COnsensus-DEgenerate hybrid oligonucleotide primer) PCR primer design. Nucleic Acids Res. 31, 3763–3766 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl Acad. Sci. USA 82, 6955–6959 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Farhan Ul Haque, M. et al. Correlated production and consumption of chloromethane in the Arabidopsis thaliana phyllosphere. Sci. Rep. 7, 17589 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sun, D. L., Jiang, X., Wu, Q. L. & Zhou, N. Y. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl. Environ. Microbiol. 79, 5962–5969 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, 232–235 (2016).

    Article  CAS  Google Scholar 

  52. Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. Y. Ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    Article  Google Scholar 

  54. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2008).

  55. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wickham H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2010).

  57. Kassambara A. ggpubR: ‘ggplot2’ Based Publication Ready Plots. R package version 2.2.1 (2018);

  58. Wilke C. O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. R package version 0.9.2 (2017);

  59. Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Article  Google Scholar 

  60. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. González, J. M., Whitman, W. B., Hodson, R. E. & Moran, M. A. Identifying numerically abundant culturable bacteria from complex communities: an example from a lignin enrichment culture. Appl. Environ. Microbiol. 62, 4433–4440 (1996).

    PubMed  PubMed Central  Google Scholar 

  64. Baumann, P. & Baumann, L. in The Prokaryotes: A Handbook on Habitats, Isolation and Identification of Bacteria (eds Starr, M. P. et al.) 1302–1331 (Springer, 1981).

  65. Sambrook, J., Fritsch, E., Maniatis, T. & Nolan, C. Molecular Cloning: a Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989).

  66. Beringer, J. E. R. Factor transfer in Rhizobium leguminosarum. J. Gen. Microbiol. 84, 188–198 (1974).

    CAS  PubMed  Google Scholar 

  67. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at (2013).

  70. Aziz, R. K. et al. The RAST server: rapid annotations using subsystems technology. BMC Genom. 9, 75 (2008).

    Article  CAS  Google Scholar 

  71. Figurski, D. H. & Helinski, D. R. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl Acad. Sci. USA 76, 1648–1652 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Carrión, O. et al. A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments. Nat. Commun. 6, 6579 (2015).

    Article  PubMed  CAS  Google Scholar 

  73. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Todd, J. D. et al. DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. Environ. Microbiol. 13, 427–438 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Schäfer, A. et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73 (1994).

    Article  PubMed  Google Scholar 

Download references


Funding from the Natural Environmental Research Council (NE/N002385, NE/P012671 and NE/S001352) supported work in J.D.T.’s laboratory. Funding from the National Natural Science Foundation of China (grant numbers 91751202 and 41730530) supported the research in X.-H.Z.’s laboratory. B.T.W. was supported by a NERC EnvEast grant (NE/L002582/1). A.B.M. and K.C. were supported by the BBSRC Norwich Research Park Biosciences Doctoral Training Partnership grant number BB/M011216/1. J.P. was supported by a NERC Independent Research Fellowship (NE/L010771/2). We thank P. Wells for general technical support, and P. Nelson and R. Whiting at the CEFAS, Lowestoft for sediment nutrient analysis. We acknowledge the Tara Oceans Consortium for providing metagenomic sequence data. We also thank the late R. Kiene, whose work on DMSP was an inspiration for this study.

Author information

Authors and Affiliations



J.D.T. wrote the paper, designed all of the experiments and performed experiments. B.T.W. wrote the paper, designed all of the experiments and performed or contributed to all of the experiments and prepared figures and tables. K.C. performed experiments (genomic library screening, mutant complementation and characterization of MMT+ bacteria). A.B.M. performed experiments (LC–MS work). A.R.J.C. performed experiments (genomic library construction, MMT assays, mutant construction and rate experiments). Y.Z. performed experiments (qPCR, degenerate primer design, sampling and DMSP quantification in the Mariana Trench). Jingli Liu and Ji Liu performed experiments (seawater incubations, qPCR, sediment sampling, purge-trap analysis, DNA/RNA purification from water). S.N.-P., M.P. and C.-Y.L. designed and performed experiments (MmtN protein characterization). P.P.L.R. performed experiments (DMSP quantification in sediment, isolation and characterization of eukaryotic species). L.G.S. wrote the paper and performed experiments (evolutionary analysis of MmtN sequences and phylogenetic tree construction). C.A.B. devised experiments for measuring DMSP pathway intermediates in sediment and cell lysate by HPLC, carried out LC–MS experiments and discussed results. B.W.M. performed experiments (16S rRNA amplicon sequencing analysis) and prepared figures. B.J.P. performed experiments (cell lysate assays); J.P. performed experiments (degenerate primer design, sediment sampling and bioinformatics analysis of metagenomic sequencing). O.C., X.-H.Z., Y.-Z.Z. and J.C.M. designed experiments and discussed results.

Corresponding author

Correspondence to Jonathan D. Todd.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, Supplementary Tables 1–3, Supplementary Tables 5 and 6, Supplementary Tables 9–11, Supplementary Tables 13–17, Supplementary references.

Reporting Summary

Supplementary Table 4

Species shown to produce DMSP, including those containing dsyB, mmtN or unknown DMSP-synthesis genes, as of June 2018.

Supplementary Table 7

Metagenome information and results of mmtN/dsyB metagenomic searches in OM-RGC and Stiffkey metagenomes.

Supplementary Table 8

DMSP production in selected strains of bacteria and activity of the corresponding cloned mmtN genes.

Supplementary Table 12

Tara Oceans metatranscriptome mmtN transcript abundance, alongside dsyB, DSYB and DMSP lyases calculated in ref. 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Williams, B.T., Cowles, K., Bermejo Martínez, A. et al. Bacteria are important dimethylsulfoniopropionate producers in coastal sediments. Nat Microbiol 4, 1815–1825 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing