Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

SEDS–bPBP pairs direct lateral and septal peptidoglycan synthesis in Staphylococcus aureus

Abstract

Peptidoglycan (PGN) is the major component of the bacterial cell wall, a structure that is essential for the physical integrity and shape of the cell. Bacteria maintain cell shape by directing PGN incorporation to distinct regions of the cell, namely, through the localization of late-stage PGN synthesis proteins. These include two key protein families, SEDS transglycosylases and bPBP transpeptidases, proposed to function in cognate pairs. Rod-shaped bacteria have two SEDS–bPBP pairs, involved in elongation and division. Here, we elucidate why coccoid bacteria, such as Staphylococcus aureus, also possess two SEDS–bPBP pairs. We determined that S.aureus RodA–PBP3 and FtsW–PBP1 probably constitute cognate pairs of interacting proteins. A lack of RodA–PBP3 resulted in more spherical cells due to deficient sidewall PGN synthesis, whereas depletion of FtsW–PBP1 arrested normal septal PGN incorporation. Although PBP1 is an essential protein, a mutant lacking PBP1 transpeptidase activity is viable, showing that this protein has a second function. We propose that the FtsW–PBP1 pair has a role in stabilizing the divisome at midcell. In the absence of these proteins, the divisome appears as multiple rings or arcs that drive lateral PGN incorporation, leading to cell elongation. We conclude that RodA–PBP3 and FtsW–PBP1 mediate sidewall and septal PGN incorporation, respectively, and that their activity must be balanced to maintain coccoid morphology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: S.aureus has two cognate SEDS–bPBP pairs of interacting proteins: FtsW–PBP1 and RodA–PBP3.
Fig. 2: RodA and PBP3 have a role in cell elongation.
Fig. 3: FtsW–PBP1 has a role in maintaining the near-spherical shape of cocci.
Fig. 4: FtsW–PBP1 depletion leads to multiple divisome structures that incorporate PGN at the lateral wall and elongate cells.
Fig. 5: Model for the role of SEDS–bPBPs in S.aureus morphogenesis.

Data availability

The data that support the findings of this study are available from the corresponding author on request.

Code availability

The in-house developed image analysis software is available in the GitHub repository: https://github.com/BacterialCellBiologyLab/PyFRET.

References

  1. 1.

    Egan, A. J., Cleverley, R. M., Peters, K., Lewis, R. J. & Vollmer, W. Regulation of bacterial cell wall growth. FEBS J. 284, 851–867 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Chastanet, A. & Carballido-Lopez, R. The actin-like MreB proteins in Bacillus subtilis: a new turn. Front. Biosci. (Schol. Ed.) 4, 1582–1606 (2012).

    Google Scholar 

  3. 3.

    Domínguez-Escobar, J. et al. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333, 225–228 (2011).

    Article  Google Scholar 

  4. 4.

    Garner, E. C. et al. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333, 222–225 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    van Teeffelen, S. et al. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc. Natl Acad. Sci. USA 108, 15822–15827 (2011).

    Article  Google Scholar 

  6. 6.

    den Blaauwen, T., Hamoen, L. W. & Levin, P. A. The divisome at 25: the road ahead. Curr. Opin. Microbiol. 36, 85–94 (2017).

    Article  Google Scholar 

  7. 7.

    Egan, A. J. & Vollmer, W. The physiology of bacterial cell division. Ann. N. Y. Acad. Sci. 1277, 8–28 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Massidda, O., Novakova, L. & Vollmer, W. From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ. Microbiol. 15, 3133–3157 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Pinho, M. G., Kjos, M. & Veening, J.-W. How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nat. Rev. Microbiol. 11, 601–614 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Perez, A. J. et al. Movement dynamics of divisome proteins and PBP2x:FtsW in cells of Streptococcus pneumoniae. Proc. Natl Acad. Sci. USA 116, 3211–3220 (2019).

    CAS  Article  Google Scholar 

  11. 11.

    Typas, A., Banzhaf, M., Gross, C. A. & Vollmer, W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 10, 123–136 (2011).

    Article  Google Scholar 

  12. 12.

    Taguchi, A. et al. FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein. Nat. Microbiol. 4, 587–594 (2019).

    CAS  Article  Google Scholar 

  13. 13.

    Emami, K. et al. RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nat. Microbiol. 2, 16253 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Meeske, A. J. et al. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 537, 634–638 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Cho, H. et al. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat. Microbiol. 1, 16172 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Scheffers, D. J. & Pinho, M. G. Bacterial cell wall synthesis: new insights from localization studies. Microbiol. Mol. Biol. Rev. 69, 585–607 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    Monteiro, J. M. et al. Cell shape dynamics during the staphylococcal cell cycle. Nat. Commun. 6, 8055 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Pereira, S. F., Henriques, A. O., Pinho, M. G., de Lencastre, H. & Tomasz, A. Role of PBP1 in cell division of Staphylococcus aureus. J. Bacteriol. 189, 3525–3531 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    Pinho, M. G., de Lencastre, H. & Tomasz, A. Cloning, characterization, and inactivation of the gene pbpC, encoding penicillin-binding protein 3 of Staphylococcus aureus. J. Bacteriol. 182, 1074–1079 (2000).

    CAS  Article  Google Scholar 

  20. 20.

    Pereira, S. F. F., Henriques, A. O., Pinho, M. G., de Lencastre, H. & Tomasz, A. Evidence for a dual role of PBP1 in the cell division and cell separation of Staphylococcus aureus. Mol. Microbiol. 72, 895–904 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    Sassine, J. et al. Functional redundancy of division specific penicillin-binding proteins in Bacillus subtilis. Mol. Microbiol. 106, 304–318 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Monteiro, J. M. et al. Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis. Nature 554, 528–532 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Wallrabe, H. & Periasamy, A. Imaging protein molecules using FRET and FLIM microscopy. Curr. Opin. Biotechnol. 16, 19–27 (2005).

    CAS  Article  Google Scholar 

  24. 24.

    Kuru, E. et al. In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent d-amino acids. Angew. Chem. Int. Ed. Engl. 51, 12519–12523 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    Levin, P. A., Kurtser, I. G. & Grossman, A. D. Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc. Natl Acad. Sci. USA 96, 9642–9647 (1999).

    CAS  Article  Google Scholar 

  26. 26.

    Jorge, A. M., Hoiczyk, E., Gomes, J. P. & Pinho, M. G. EzrA contributes to the regulation of cell size in Staphylococcus aureus. PLoS ONE 6, e27542 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    den Blaauwen, T., de Pedro, M. A., Nguyen-Disteche, M. & Ayala, J. A. Morphogenesis of rod-shaped sacculi. FEMS Microbiol. Rev. 32, 321–344 (2008).

    Article  Google Scholar 

  28. 28.

    Aaron, M. et al. The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Mol. Microbiol. 64, 938–952 (2007).

    CAS  Article  Google Scholar 

  29. 29.

    Rohs, P. D. A. et al. A central role for PBP2 in the activation of peptidoglycan polymerization by the bacterial cell elongation machinery. PLoS Genet. 14, e1007726 (2018).

    Article  Google Scholar 

  30. 30.

    Cho, H., Uehara, T. & Bernhardt, T. G. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159, 1300–1311 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Du, S., Pichoff, S. & Lutkenhaus, J. FtsEX acts on FtsA to regulate divisome assembly and activity. Proc. Natl Acad. Sci. USA 113, E5052–E5061 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Modell, J. W., Kambara, T. K., Perchuk, B. S. & Laub, M. T. A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus. PLoS Biol. 12, e1001977 (2014).

    Article  Google Scholar 

  33. 33.

    Lund, V. A. et al. Molecular coordination of Staphylococcus aureus cell division. eLife 7, e32057 (2018).

    Article  Google Scholar 

  34. 34.

    Veiga, H. & Pinho, M. G. Inactivation of the SauI type I restriction-modification system is not sufficient to generate Staphylococcus aureus strains capable of efficiently accepting foreign DNA. Appl. Environ. Microbiol. 75, 3034–3038 (2009).

    CAS  Article  Google Scholar 

  35. 35.

    Oshida, T. & Tomasz, A. Isolation and characterization of a Tn551-autolysis mutant of Staphylococcus aureus. J. Bacteriol. 174, 4952–4959 (1992).

    CAS  Article  Google Scholar 

  36. 36.

    Pereira, P., Veiga, H., Jorge, A. & Pinho, M. Fluorescent reporters for studies of cellular localization of proteins in Staphylococcus aureus. Appl. Environ. Microbiol. 76, 4346–4353 (2010).

    CAS  Article  Google Scholar 

  37. 37.

    Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, 1989).

  38. 38.

    Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol. 1151, 165–188 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Filipe, S. R., Tomasz, A. & Ligoxygakis, P. Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway. EMBO Rep. 6, 327–333 (2005).

    CAS  Article  Google Scholar 

  40. 40.

    Reed, P. et al. Staphylococcus aureus survives with a minimal peptidoglycan synthesis machine but sacrifices virulence and antibiotic resistance. PLoS Pathog. 11, e1004891 (2015).

    Article  Google Scholar 

  41. 41.

    Kuru, E., Tekkam, S., Hall, E., Brun, Y. V. & Van Nieuwenhze, M. S. Synthesis of fluorescent d-amino acids and their use for probing peptidoglycan synthesis and bacterial growth in situ. Nat. Protoc. 10, 33–52 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    Pereira, A. R. et al. FtsZ-dependent elongation of a coccoid bacterium. mBio 7, e00908-16 (2016).

    Article  Google Scholar 

  43. 43.

    Chen, H., Puhl, H. L. 3rd, Koushik, S. V., Vogel, S. S. & Ikeda, S. R. Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophys. J. 91, L39–L41 (2006).

    CAS  Article  Google Scholar 

  44. 44.

    Hoppe, A., Christensen, K. & Swanson, J. A. Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys. J. 83, 3652–3664 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. Moreira for hosting laboratory work at the Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal, S. R. Filipe (FCT-NOVA) and R. Carballido-Lopez (INRA) for helpful discussions, S. Bonucci and E. M. Tranfield (Electron Microscopy Facility, IGC) for technical expertise and sample processing, and A. Bernardo, I. Jorge, D. Kądziołka and K. Witana for help in the construction of some plasmids. This study was funded by the European Research Council through grant ERC-2017-CoG-771709 (to M.G.P.), Project LISBOA-01-0145FEDER-007660 Microbiologia Molecular, Estrutural e Celular (to ITQB-NOVA), the Portuguese Platform of Bioimaging PPBI-POCI-01-0145-FEDER-022122, researcher contract no. IF/00386/2015 (to F.F.) and FCT fellowships SFRH/BPD/95031/2013 (to N.T.R.) and SFRH/BD/52204/2013 (to A.C.T.). Whole-genome sequencing analysis at the Genomics Unit of Instituto Gulbenkian de Ciencia was supported by the ONEIDA project (LISBOA-01-0145-FEDER-016417) co-funded by FEEI—‘Fundos Europeus Estruturais e de Investimento’ from ‘Programa Operacional Regional Lisboa 2020’—and by national funds from FCT—‘Fundação para a Ciência e a Tecnologia’.

Author information

Affiliations

Authors

Contributions

N.T.R., A.C.T. and M.G.P. designed the research. N.T.R. and A.C.T. performed all of the experiments, with the exception of the FLIM data acquisition and analysis, which was performed by F.F., and the HPLC muropeptide analysis performed by A.J. B.M.S. developed software for image analysis of the seFRET data. N.T.R., A.C.T. and P.R. constructed the strains. A.J. and P.R. analysed the whole-genome sequencing data. J.M.M. and A.R.P. performed the preliminary experiments and analysed the data. R.G.S. performed the preliminary experiments. M.S.V.N. contributed new reagents (FDAAs). N.T.R., A.C.T. and M.G.P. analysed the overall data. B.M.S. analysed the seFRET data quantified by in-house developed software. N.T.R., A.C.T. and M.G.P. wrote the manuscript.

Corresponding author

Correspondence to Mariana G. Pinho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–11, Supplementary Tables 1–3, Supplementary Video legends and Supplementary References.

Reporting Summary

Supplementary Video 1

ColFtsWi time-lapse imaging.

Supplementary Video 2

ColPBP1i time-lapse imaging.

Supplementary Video 3

ColPBP1TP time-lapse imaging.

Supplementary Video 4

ColPBP1TP time-lapse imaging.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reichmann, N.T., Tavares, A.C., Saraiva, B.M. et al. SEDS–bPBP pairs direct lateral and septal peptidoglycan synthesis in Staphylococcus aureus. Nat Microbiol 4, 1368–1377 (2019). https://doi.org/10.1038/s41564-019-0437-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing