Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular architecture, polar targeting and biogenesis of the Legionella Dot/Icm T4SS

Abstract

Legionella pneumophila survives and replicates inside host cells by secreting ~300 effectors through the defective in organelle trafficking (Dot)/intracellular multiplication (Icm) type IVB secretion system (T4BSS). Here, we used complementary electron cryotomography and immunofluorescence microscopy to investigate the molecular architecture and biogenesis of the Dot/Icm secretion apparatus. Electron cryotomography mapped the location of the core and accessory components of the Legionella core transmembrane subcomplex, revealing a well-ordered central channel that opens into a large, windowed secretion chamber with an unusual 13-fold symmetry. Immunofluorescence microscopy deciphered an early-stage assembly process that begins with the targeting of Dot/Icm components to the bacterial poles. Polar targeting of this T4BSS is mediated by two Dot/Icm proteins, DotU and IcmF, that, interestingly, are homologues of the T6SS membrane complex components TssL and TssM, suggesting that the Dot/Icm T4BSS is a hybrid system. Together, these results revealed that the Dot/Icm complex assembles in an ‘axial-to-peripheral’ pattern.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overall structure of the Dot/Icm T4BSS.
Fig. 2: Mutant structures, difference maps and an architectural model of the Dot/Icm T4BSS.
Fig. 3: Dot/Icm-dependent polar targeting of the LCTM subcomplex.
Fig. 4: DotU and IcmF localize to the bacterial poles in the absence of the Legionella T4SS.
Fig. 5: Reconstitution of the core transmembrane subcomplex in the S∆(UF) strain.
Fig. 6: Polar targeting and assembly of the LCTM subcomplex by UF.

Data availability

The subtomogram average of the Dot/Icm (DotF-sfGFP) complex that supports the findings of this study has been deposited in the Electron Microscopy Data Bank (EMDB) under the accession code: EMD-0566. All other density maps are available from the corresponding authors on request. The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information documents.

References

  1. 1.

    Christie, P. J., Whitaker, N. & Gonzalez-Rivera, C. Mechanism and structure of the bacterial type IV secretion systems. Biochim. Biophys. Acta 1843, 1578–1591 (2014).

    CAS  Article  PubMed Central  Google Scholar 

  2. 2.

    Costa, T. R. D. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015).

    CAS  Article  PubMed Central  Google Scholar 

  3. 3.

    Christie, P. J. & Vogel, J. P. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol. 8, 354–360 (2000).

    CAS  Article  PubMed Central  Google Scholar 

  4. 4.

    Guglielmini, J. et al. Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res. 42, 5715–5727 (2014).

    CAS  Article  PubMed Central  Google Scholar 

  5. 5.

    Segal, G., Feldman, M. & Zusman, T. The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiol. Rev. 29, 65–81 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  6. 6.

    Nagai, H. & Kubori, T. Type IVB secretion systems of Legionella and other Gram-negative bacteria. Front. Microbiol. 2, 136 (2011).

    Article  PubMed Central  Google Scholar 

  7. 7.

    Sutherland, M. C., Nguyen, T. L., Tseng, V. & Vogel, J. P. The Legionella IcmSW complex directly interacts with DotL to mediate translocation of adaptor-dependent substrates. PLoS Pathog. 8, e1002910 (2012).

    CAS  Article  PubMed Central  Google Scholar 

  8. 8.

    Vincent, C. D. et al. Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol. 62, 1278–1291 (2006).

    CAS  Article  PubMed Central  Google Scholar 

  9. 9.

    Vincent, C. D., Friedman, J. R., Jeong, K. C., Sutherland, M. C. & Vogel, J. P. Identification of the DotL coupling protein subcomplex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol. 85, 378–391 (2012).

    CAS  Article  PubMed Central  Google Scholar 

  10. 10.

    Kwak, M.-J. et al. Architecture of the type IV coupling protein complex of Legionella pneumophila. Nat. Microbiol. 2, 17114 (2017).

    CAS  Article  PubMed Central  Google Scholar 

  11. 11.

    Jeong, K. C., Ghosal, D., Chang, Y.-W., Jensen, G. J. & Vogel, J. P. Polar delivery of Legionella type IV secretion system substrates is essential for virulence. Proc. Natl Acad. Sci. USA 114, 8077–8082 (2017).

    CAS  Article  PubMed Central  Google Scholar 

  12. 12.

    Ghosal, D., Chang, Y. W., Jeong, K. C., Vogel, J. P. & Jensen, G. J. In situ structure of the Legionella Dot/Icm type IV secretion system by electron cryotomography. EMBO Rep. 18, 726–732 (2017).

    CAS  Article  PubMed Central  Google Scholar 

  13. 13.

    Dinh, T. & Bernhardt, T. G. Using superfolder green fluorescent protein for periplasmic protein localization studies. J. Bacteriol. 193, 4984–4987 (2011).

    CAS  Article  PubMed Central  Google Scholar 

  14. 14.

    Chetrit, D., Hu, B., Christie, P. J., Roy, C. R. & Liu, J. A unique cytoplasmic ATPase complex defines the Legionella pneumophila type IV secretion channel. Nat. Microbiol. 3, 678–686 (2018).

    CAS  Article  PubMed Central  Google Scholar 

  15. 15.

    Kubori, T. et al. Native structure of a type IV secretion system core complex essential for Legionella pathogenesis. Proc. Natl Acad. Sci. USA 111, 11804–11809 (2014).

    CAS  Article  PubMed Central  Google Scholar 

  16. 16.

    Chandran, V. et al. Structure of the outer membrane complex of a type IV secretion system. Nature 462, 1011–1015 (2009).

    CAS  Article  PubMed Central  Google Scholar 

  17. 17.

    Rivera-Calzada, A. et al. Structure of a bacterial type IV secretion core complex at subnanometre resolution. EMBO J. 32, 1195–1204 (2013).

    CAS  Article  PubMed Central  Google Scholar 

  18. 18.

    Yerushalmi, G., Zusman, T. & Segal, G. Additive effect on intracellular growth by Legionella pneumophila Icm/Dot proteins containing a lipobox motif. Infect. Immun. 73, 7578–7587 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  19. 19.

    Nakano, N., Kubori, T., Kinoshita, M., Imada, K. & Nagai, H. Crystal structure of Legionella DotD: insights into the relationship between type IVB and type II/III secretion systems. PLoS Pathog. 6, e1001129 (2010).

    Article  PubMed Central  Google Scholar 

  20. 20.

    Souza, D. P. et al. A component of the Xanthomonadaceae type IV secretion system combines a VirB7 motif with a N0 domain found in outer membrane transport proteins. PLoS Pathog. 7, e1002031 (2011).

    CAS  Article  PubMed Central  Google Scholar 

  21. 21.

    Matthews, M. & Roy, C. R. Identification and subcellular localization of the Legionella pneumophila IcmX protein: a factor essential for establishment of a replicative organelle in eukaryotic host cells. Infect. Immun. 68, 3971–3982 (2000).

    CAS  Article  PubMed Central  Google Scholar 

  22. 22.

    Nagai, H. & Roy, C. R. The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter. EMBO J. 20, 5962–5970 (2001).

    CAS  Article  PubMed Central  Google Scholar 

  23. 23.

    Durand, E. et al. Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems. J. Biol. Chem. 287, 14157–14168 (2012).

    CAS  Article  PubMed Central  Google Scholar 

  24. 24.

    Nguyen, V. S. et al. Towards a complete structural deciphering of type VI secretion system. Curr. Opin. Struct. Biol. 49, 77–84 (2018).

    CAS  Article  PubMed Central  Google Scholar 

  25. 25.

    Sexton, J. A., Miller, J. L., Yoneda, A., Kehl-Fie, T. E. & Vogel, J. P. Legionella pneumophila DotU and IcmF are required for stability of the Dot/Icm complex. Infect. Immun. 72, 5983–5992 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  26. 26.

    VanRheenen, S. M., Dumenil, G. & Isberg, R. R. IcmF and DotU are required for optimal effector translocation and trafficking of the Legionella pneumophila vacuole. Infect. Immun. 72, 5972–5982 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  27. 27.

    Zusman, T., Feldman, M., Halperin, E. & Segal, G. Characterization of the icmH and icmF genes required for Legionella pneumophila intracellular growth, genes that are present in many bacteria associated with eukaryotic cells. Infect. Immun. 72, 3398–3409 (2004).

    CAS  Article  PubMed Central  Google Scholar 

  28. 28.

    Durand, E. et al. Biogenesis and structure of a type VI secretion membrane core complex. Nature 523, 555–560 (2015).

    CAS  Article  PubMed Central  Google Scholar 

  29. 29.

    Chang, Y.-W., Shaffer, C. L., Rettberg, L. A., Ghosal, D. & Jensen, G. J. In vivo structures of the Helicobacter pylori cag type IV secretion system. Cell Rep. 23, 673–681 (2018).

    CAS  Article  PubMed Central  Google Scholar 

  30. 30.

    Frick-Cheng, A. E. et al. Molecular and structural analysis of the Helicobacter pylori cag type IV secretion system core complex. mBio 7, e02001-15 (2016).

    Article  PubMed Central  Google Scholar 

  31. 31.

    Low, H. H. et al. Structure of a type IV secretion system. Nature 508, 550–553 (2014).

    CAS  Article  PubMed Central  Google Scholar 

  32. 32.

    Basler, M. Type VI secretion system: secretion by a contractile nanomachine. Phil. Trans. R. Soc. B 370, 20150021 (2015).

    Article  PubMed Central  Google Scholar 

  33. 33.

    Kubori, T. & Nagai, H. The type IVB secretion system: an enigmatic chimera. Curr. Opin. Microbiol. 29, 22–29 (2016).

    CAS  Article  PubMed Central  Google Scholar 

  34. 34.

    Bardill, J. P., Miller, J. L. & Vogel, J. P. IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol. Microbiol. 56, 90–103 (2005).

    CAS  Article  PubMed Central  Google Scholar 

  35. 35.

    Tivol, W. F., Briegel, A. & Jensen, G. J. An improved cryogen for plunge freezing. Microsc. Microanal. 14, 375–379 (2008).

    CAS  Article  PubMed Central  Google Scholar 

  36. 36.

    Zheng, S. Q. et al. UCSF tomography: an integrated software suite for real-time electron microscopic tomographic data collection, alignment, and reconstruction. J. Struct. Biol. 157, 138–147 (2007).

    CAS  Article  PubMed Central  Google Scholar 

  37. 37.

    Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    CAS  Article  PubMed Central  Google Scholar 

  38. 38.

    Agulleiro, J.-I. & Fernandez, J.-J. Tomo3D 2.0—exploitation of advanced vector extensions (AVX) for 3D reconstruction. J. Struct. Biol. 189, 147–152 (2015).

    Article  PubMed Central  Google Scholar 

  39. 39.

    Nicastro, D. et al. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313, 944–948 (2006).

    CAS  Article  Google Scholar 

  40. 40.

    The UniProt Consortium, T. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 46, 2699 (2018).

  41. 41.

    Emanuelsson, O., Brunak, S., von Heijne, G. & Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2, 953–971 (2007).

    CAS  Article  PubMed Central  Google Scholar 

  42. 42.

    Käll, L., Krogh, A. & Sonnhammer, E. L. L. A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol. 338, 1027–1036 (2004).

    Article  PubMed Central  Google Scholar 

  43. 43.

    Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    CAS  Article  PubMed Central  Google Scholar 

  44. 44.

    Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    CAS  Article  PubMed Central  Google Scholar 

  45. 45.

    Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).

    CAS  Article  PubMed Central  Google Scholar 

  46. 46.

    Xu, D. & Zhang, Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80, 1715–1735 (2012).

    CAS  Article  PubMed Central  Google Scholar 

  47. 47.

    Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H. J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33, W363–W367 (2005).

    CAS  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Isberg (Tufts University, Medford, MA, USA) for antibodies that recognize DotF and DotH, E. Buford for technical assistance and P. Levin (Washington University, St Louis, MO, USA) for assistance with deconvolution microscopy. ECT data were recorded at the Beckman Institute Resource Center for Transmission Electron Microcopy at Caltech and the cryo-EM facility at Janelia Research Campus. We thank C. Oikonomou for the creation of the domain maps and for help structuring and revising the text. We also recognize E. Darwin for key suggestions and critical appraisal of this manuscript. This work was funded by the NIH grant R01AI127401 to G.J.J. and the NIH grant R01AI48052 to J.P.V.

Author information

Affiliations

Authors

Contributions

D.G., K.C.C.J., J.P.V. and G.J.J. conceived the project. K.C.C.J., J.P.V. and J.G. constructed and characterized the L.pneumophila expression plasmids and strains. K.C.J. and J.P.V. collected the immunofluorescence data. D.G. collected the tomography data. D.G., K.C.C.J., J.P.V., G.J.J., Y.-W.C. and L.T. analysed the data. A.G. made Supplementary Video 1. D.G., J.P.V., K.C.C.J. and G.J.J. wrote the manuscript with input from other authors.

Corresponding authors

Correspondence to Joseph P. Vogel or Grant J. Jensen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–32, Supplementary Video Legend, Supplementary Tables 1 and 2, and Supplementary References.

Reporting Summary

Supplementary Video 1

3D representation of the Dot/Icm complex showing a windowed secretion chamber (salmon, DotH; grey, DotD; green, DotK; and cyan, DotC), wings (yellow, DotF), a secretion channel (red, DotG) and the top-view of the complex. Cytoplasmic components are not shown. In this 3D representation, IcmF, IcmX and DotA are not visible. The blue structure below the secretion channel represents the UF seed that initiates polar Dot/Icm complex assembly.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosal, D., Jeong, K.C., Chang, YW. et al. Molecular architecture, polar targeting and biogenesis of the Legionella Dot/Icm T4SS. Nat Microbiol 4, 1173–1182 (2019). https://doi.org/10.1038/s41564-019-0427-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing