Localized production of defence chemicals by intracellular symbionts of Haliclona sponges


Marine sponges often house small-molecule-producing symbionts extracellularly in their mesohyl, providing the host with a means of chemical defence against predation and microbial infection. Here, we report an intriguing case of chemically mediated symbiosis between the renieramycin-containing sponge Haliclona sp. and its herein discovered renieramycin-producing symbiont Candidatus Endohaliclona renieramycinifaciens. Remarkably, Ca. E. renieramycinifaciens has undergone extreme genome reduction where it has lost almost all necessary elements for free living while maintaining a complex, multi-copy plasmid-encoded biosynthetic gene cluster for renieramycin biosynthesis. In return, the sponge houses Ca. E. renieramycinifaciens in previously uncharacterized cellular reservoirs (chemobacteriocytes), where it can acquire nutrients from the host and avoid bacterial competition. This relationship is highly specific to a single clade of Haliclona sponges. Our study reveals intracellular symbionts as an understudied source for defence chemicals in the oldest-living metazoans and paves the way towards discovering similar systems in other marine sponges.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Chemistry of Haliclona sponges.
Fig. 2: Renieramycin biosynthesis.
Fig. 3: Ca. E. renieramycinifaciens genomes and plasmids.
Fig. 4: p-ren and Ca. E. renieramycinifaciens colocalize with the largest sponge particles.
Fig. 5: Localization of Ca. E. renieramycinifaciens in sponge chemobacteriocytes.
Fig. 6: Host specificity of Ca. E. renieramycinifaciens.

Data availability

The data that support the findings of this study are available from the corresponding author on request. The Ca. E. renieramycinifaciens genomes have been deposited to the IMG (Joint Genome Institute, Department of Energy) public repository, under IMG submission IDs 151197, 151198, 119799 and 119800.


  1. 1.

    Thomas, T. et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 7, 11870 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Hentschel, U., Piel, J., Degnan, S. M. & Taylor, M. W. Genomic insights into the marine sponge microbiome. Nat. Rev. Microbiol. 10, 641–654 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Nguyen, M. T., Liu, M. & Thomas, T. Ankyrin-repeat proteins from sponge symbionts modulate amoebal phagocytosis. Mol. Ecol. 23, 1635–1645 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Burgsdorf, I. et al. Lifestyle evolution in cyanobacterial symbionts of sponges. mBio 6, e00391-15 (2015).

    Article  Google Scholar 

  5. 5.

    Taylor, M. W., Radax, R., Steger, D. & Wagner, M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295–347 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    Fan, L. et al. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc. Natl Acad. Sci. USA 109, E1878–E1887 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    Garate, L., Sureda, J., Agell, G. & Uriz, M. J. Endosymbiotic calcifying bacteria across sponge species and oceans. Sci. Rep. 7, 43674 (2017).

    Article  Google Scholar 

  8. 8.

    Zhang, F. et al. Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges. Proc. Natl Acad. Sci. USA 112, 4381–4386 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Schmidt, E. W., Obraztsova, A. Y., Davidson, S., Faulkner, D. J. & Haygood, M. Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel delta-proteobacterium, “Candidatus Entotheonella palauensis”. Mar. Biol. 136, 969–977 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Agarwal, V. et al. Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges. Nat. Chem. Biol. 13, 537–543 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Blunt, J. W. et al. Marine natural products. Nat. Prod. Rep. 35, 8–53 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Amnuoypol, S. et al. Chemistry of renieramycins. Part 5. Structure elucidation of renieramycin-type derivatives O, Q, R, and S from thai marine sponge Xestospongia species pretreated with potassium cyanide. J. Nat. Prod. 67, 1023–1028 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    Davidson, B. S. Renieramycin G, a new alkaloid from the sponge Xestospongia caycedoi. Tetrahedron Lett. 33, 3721–3724 (1992).

    CAS  Article  Google Scholar 

  15. 15.

    Oku, N., Matsunaga, S., van Soest, R. W., Fusetani, N. & Renieramycin, J. A highly cytotoxic tetrahydroisoquinoline alkaloid, from a marine sponge Neopetrosia sp. J. Nat. Prod. 66, 1136–1139 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    Suwanborirux, K. et al. Chemistry of renieramycins. Part 3.(1) isolation and structure of stabilized renieramycin type derivatives possessing antitumor activity from Thai sponge Xestospongia species, pretreated with potassium cyanide. J. Nat. Prod. 66, 1441–1446 (2003).

    CAS  Article  Google Scholar 

  17. 17.

    Frincke, J. M. & Faulkner, D. J. Antimicrobial metabolites of the sponge Reniera sp. J. Am. Chem. Soc. 104, 265–269 (1982).

    CAS  Article  Google Scholar 

  18. 18.

    Lopanik, N. B. & Clay, K. Chemical defensive symbioses in the marine environment. Funct. Ecol. 28, 328–340 (2014).

    Article  Google Scholar 

  19. 19.

    Darumas, U., Chavanich, S. & Suwanborirux, K. Distribution patterns of the renieramycin-producing sponge, Xestospongia sp., and its association with other reef organisms in the gulf of Thailand. Zool. Stud. 46, 695–704 (2007).

    Google Scholar 

  20. 20.

    Arai, T. et al. The structures of novel antibiotics, saframycin B and C. Tetrahedron Lett. 20, 2355–2358 (1979).

    Article  Google Scholar 

  21. 21.

    Arai, T., Takahashi, K., Nakahara, S. & Kubo, A. The structure of a novel antitumor antibiotic, saframycin A. Experientia 36, 1025–1027 (1980).

    CAS  Article  Google Scholar 

  22. 22.

    Irschik, H., Trowitzsch-Kienast, W., Gerth, K., Hofle, G. & Reichenbach, H. Saframycin Mx1, a new natural saframycin isolated from a myxobacterium. J. Antibiot. (Tokyo) 41, 993–998 (1988).

    CAS  Article  Google Scholar 

  23. 23.

    Ikeda, Y., Matsuki, H., Ogawa, T. & Munakata, T. Safracins, new antitumor antibiotics. II. Physicochemical properties and chemical structures. J. Antibiot. (Tokyo) 36, 1284–1289 (1983).

    CAS  Article  Google Scholar 

  24. 24.

    Ikeda, Y., Shimada, Y., Honjo, K., Okumoto, T. & Munakata, T. Safracins, new antitumor antibiotics. III. Biological activity. J. Antibiot. (Tokyo) 36, 1290–1294 (1983).

    CAS  Article  Google Scholar 

  25. 25.

    Rinehart, K. L. et al. Ecteinascidins 729, 743, 745, 759A, 759B, and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata. J. Org. Chem. 55, 4512–4515 (1990).

    CAS  Article  Google Scholar 

  26. 26.

    Rath, C. M. et al. Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chem. Biol. 6, 1244–1256 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    Schofield, M. M., Jain, S., Porat, D., Dick, G. J. & Sherman, D. H. Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743. Environ. Microbiol. 17, 3964–3975 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Recine, F. et al. Update on the role of trabectedin in the treatment of intractable soft tissue sarcomas. OncoTargets Ther. 10, 1155–1164 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Pospiech, A., Cluzel, B., Bietenhader, J. & Schupp, T. A new Myxococcus xanthus gene cluster for the biosynthesis of the antibiotic saframycin Mx1 encoding a peptide synthetase. Microbiology 141, 1793–1803 (1995).

    CAS  Article  Google Scholar 

  30. 30.

    Weber, T. et al. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43, W237–W243 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Woodhouse, J. N., Fan, L., Brown, M. V., Thomas, T. & Neilan, B. A. Deep sequencing of non-ribosomal peptide synthetases and polyketide synthases from the microbiomes of Australian marine sponges. ISME J. 7, 1842–1851 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Fu, C.-Y. Biosynthesis of 3-hydroxy-5-methyl-O-methyltyrosine in the saframycin/safracin biosynthetic pathway. J. Microbiol. Biotechnol. 19, 439–446 (2009).

    CAS  Article  Google Scholar 

  33. 33.

    Velasco, A. et al. Molecular characterization of the safracin biosynthetic pathway from Pseudomonas fluorescens A2-2: designing new cytotoxic compounds. Mol. Microbiol. 56, 144–154 (2005).

    CAS  Article  Google Scholar 

  34. 34.

    Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Daims, H., Bruhl, A., Amann, R., Schleifer, K. H. & Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444 (1999).

    CAS  Article  Google Scholar 

  36. 36.

    Webster, N. S. et al. Same, same but different: symbiotic bacterial associations in GBR sponges. Front. Microbiol. 3, 444 (2012).

    CAS  PubMed  Google Scholar 

  37. 37.

    Checcucci, A. & Mengoni, A. The Integrated Microbial Genome resource of analysis. Methods Mol. Biol. 1231, 289–295 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    Lackner, G., Peters, E. E., Helfrich, E. J. & Piel, J. Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. Proc. Natl Acad. Sci. USA 114, E347–E356 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Mori, T. et al. Single-bacterial genomics validates rich and varied specialized metabolism of uncultivated Entotheonella sponge symbionts. Proc. Natl Acad. Sci. USA 115, 1718–1723 (2018).

    CAS  Article  Google Scholar 

  41. 41.

    Florez, L. V., Biedermann, P. H., Engl, T. & Kaltenpoth, M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep. 32, 904–936 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    Kwan, J. C. et al. Genome streamlining and chemical defense in a coral reef symbiosis. Proc. Natl Acad. Sci. USA 109, 20655–20660 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    Lopera, J., Miller, I. J., McPhail, K. L. & Kwan, J. C. Increased biosynthetic gene dosage in a genome-reduced defensive bacterial symbiont. mSystems 2, e00096-17 (2017).

    Article  Google Scholar 

  44. 44.

    Engl, T. et al. Evolutionary stability of antibiotic protection in a defensive symbiosis. Proc. Natl Acad. Sci. USA 115, E2020–E2029 (2018).

    CAS  Article  Google Scholar 

  45. 45.

    Nakabachi, A. et al. Defensive bacteriome symbiont with a drastically reduced genome. Curr. Biol. 23, 1478–1484 (2013).

    CAS  Article  Google Scholar 

  46. 46.

    Maldonado, M. Intergenerational transmission of symbiotic bacteria in oviparous and viviparous demosponges, with emphasis on intracytoplasmically-compartmented bacterial types. J. Mar. Biol. Assoc. UK 87, 1701–1713 (2007).

    Article  Google Scholar 

  47. 47.

    Vacelet, J. & Donadey, C. Electron microscope study of the association between some sponges and bacteria. J. Exp. Mar. Biol. Ecol. 30, 301–314 (1977).

    Article  Google Scholar 

  48. 48.

    Uriz, M. J., Agell, G., Blanquer, A., Turon, X. & Casamayor, E. O. Endosymbiotic calcifying bacteria: a new cue to the origin of calcification in metazoa? Evolution 66, 2993–2999 (2012).

    Article  Google Scholar 

  49. 49.

    Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).

    CAS  Article  Google Scholar 

  50. 50.

    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    CAS  Article  Google Scholar 

  51. 51.

    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    Article  Google Scholar 

  52. 52.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  Article  Google Scholar 

  53. 53.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  54. 54.

    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    CAS  Article  Google Scholar 

  55. 55.

    Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    CAS  Article  Google Scholar 

  56. 56.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  Article  Google Scholar 

  57. 57.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  Google Scholar 

  58. 58.

    Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    CAS  Article  Google Scholar 

  59. 59.

    Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat. Biotechnol. 31, 533–538 (2013).

    CAS  Article  Google Scholar 

  60. 60.

    Srivastava, M. et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726 (2010).

    CAS  Article  Google Scholar 

  61. 61.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

  62. 62.

    Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).

    CAS  Article  Google Scholar 

  63. 63.

    Schramm, A., Fuchs, B. M., Nielsen, J. L., Tonolla, M. & Stahl, D. A. Fluorescence in situ hybridization of 16S rRNA gene clones (clone-FISH) for probe validation and screening of clone libraries. Environ. Microbiol. 4, 713–720 (2002).

    CAS  Article  Google Scholar 

  64. 64.

    Wolfgang, M. C. et al. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 100, 8484–8489 (2003).

    CAS  Article  Google Scholar 

  65. 65.

    Yamanaka, K. et al. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc. Natl Acad. Sci. USA 111, 1957–1962 (2014).

    CAS  Article  Google Scholar 

Download references


We thank E. W. Schmidt, M. K. Harper-Ireland and C. Ireland at the University of Utah for providing samples Ren-PNG-07060, Ren-PNG-07113 and Ren-Pal-02, and the Republic of Palau, Papua New Guinea and the Republic of Indonesia as original sources for the sponge samples studied here. We thank M. K. Harper-Ireland and C. Ireland at the University of Utah for the underwater photograph of the Haliclona sponge shown in Fig. 1. We are grateful to C. DeCoste and the Molecular Biology Flow Cytometry Resource Facility (partially supported by the Cancer Institute of New Jersey Cancer Center Support Grant P30CA072720) for assistance with flow cytometry; P. Shao and the Molecular Biology Electron Microscopy Core Facility for assistance with TEM; G. Laevsky, the Molecular Biology Confocal Microscopy Core Facility (a Nikon Center of Excellence) and J. Zan for assistance with FISH and microscopy experiments; G. Hrebikova and A. Ploss for assistance with LCM; W. Wang and the Lewis Sigler Institute Sequencing Core Facility for assistance with high-throughput sequencing; M. Cahn for assistance with metagenomic data analysis; S. Chatterjee for general assistance; Y. Sugimoto and P. Chankhamjon for assistance with NMR and HPLC–HR-MS; and the rest of the Donia lab for useful discussions. We also thank the anonymous Nature Microbiology reviewer who suggested the name Ca. E. renieramycinifaciens for the symbiont discovered in this study. Funding for this project has been provided by Princeton University, and M.S.D. is funded by an NIH Director’s New Innovator Award (ID: 1DP2AI124441).

Author information




M.D.T.-M. and M.S.D. designed the study. M.D.T.-M., J.N.B. and M.S.D. performed the experiments, analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Mohamed S. Donia.

Ethics declarations

Competing interests

M.S.D. is a member of the Scientific Advisory Board for Deepbiome Therapeutics and a consultant for Flagship Pioneering.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Supplementary Tables 1–5, Supplementary Figures 1–9 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tianero, M.D., Balaich, J.N. & Donia, M.S. Localized production of defence chemicals by intracellular symbionts of Haliclona sponges. Nat Microbiol 4, 1149–1159 (2019). https://doi.org/10.1038/s41564-019-0415-8

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing