The global population at risk from mosquito-borne diseases—including dengue, yellow fever, chikungunya and Zika—is expanding in concert with changes in the distribution of two key vectors: Aedes aegypti and Aedes albopictus. The distribution of these species is largely driven by both human movement and the presence of suitable climate. Using statistical mapping techniques, we show that human movement patterns explain the spread of both species in Europe and the United States following their introduction. We find that the spread of Ae. aegypti is characterized by long distance importations, while Ae. albopictus has expanded more along the fringes of its distribution. We describe these processes and predict the future distributions of both species in response to accelerating urbanization, connectivity and climate change. Global surveillance and control efforts that aim to mitigate the spread of chikungunya, dengue, yellow fever and Zika viruses must consider the so far unabated spread of these mosquitos. Our maps and predictions offer an opportunity to strategically target surveillance and control programmes and thereby augment efforts to reduce arbovirus burden in human populations globally.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 21 March 2019

    In the version of this Article originally published, the affiliation for author Catherine Linard was incorrectly stated as ‘6Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK’. The correct affiliation is ‘9Spatial Epidemiology Lab (SpELL), Universite Libre de Bruxelles, Brussels, Belgium’. The affiliation for author Hongjie Yu was also incorrectly stated as ‘11Department of Statistics, Harvard University, Cambridge, MA, USA’. The correct affiliation is ‘15School of Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China’. This has now been amended in all versions of the Article.


  1. 1.

    Nsoesie, E. O. et al. Global distribution and environmental suitability for chikungunya virus, 1952 to 2015. Eurosurveillance 21, 30234 (2015).

  2. 2.

    Messina, J. P. et al. Mapping global environmental suitability for Zika virus. eLife 5, e15272 (2016).

  3. 3.

    Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).

  4. 4.

    Kraemer, M. U. G. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4, e08347 (2015).

  5. 5.

    Lessler, J. et al. Assessing the global threat from Zika virus. Science 353, aaf8160 (2016).

  6. 6.

    Faria, N. R. et al. Epidemic establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546, 406–410 (2017).

  7. 7.

    Grubaugh, N. D., Ladner, J. T., Kraemer, M. U. G., Dudas, G. & Tan, A. L. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546, 401–405 (2017).

  8. 8.

    Messina, J. P. et al. The many projected futures of dengue. Nat. Rev. Microbiol. 13, 230–239 (2015).

  9. 9.

    Kraemer, M. U. G. et al. Progress and challenges in infectious disease cartography. Trends Parasitol. 32, 19–29 (2016).

  10. 10.

    Powell, J. R. Mosquitoes on the move. Science 354, 971–972 (2016).

  11. 11.

    Powell, J. R. & Tabachnick, W. J. History of domestication and spread of Aedes aegypti—a review. Mem. Inst. Oswaldo Cruz 108 (Suppl. 1), 11–17 (2013).

  12. 12.

    Scott, T. W. et al. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J. Med. Entomol. 37, 89–101 (2000).

  13. 13.

    Guerra, C. A. et al. A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-borne pathogens. Parasit. Vectors 7, 276 (2014).

  14. 14.

    Hawley, W. A., Pumpuni, C. B., Brady, R. H. & Craig, G. B. Overwintering survival of Aedes albopictus (Diptera, Culicidae) eggs in Indiana. J. Med. Entomol. 26, 122–129 (1989).

  15. 15.

    Maynard, A. J. et al. Tiger on the prowl: invasion history and spatio-temporal genetic structure of the Asian tiger mosquito Aedes albopictus (Skuse 1894) in the Indo-Pacific. PLoS Negl. Trop. Dis. 11, e0005546 (2017).

  16. 16.

    Benedict, M. Q., Levine, R. S., Hawley, W. A. & Lounibos, L. P. Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis. 7, 76–85 (2007).

  17. 17.

    Armbruster, P. A. Review photoperiodic diapause and the establishment of Aedes albopictus (Diptera: Culicidae) in North America. J. Med. Entomol. 53, 1013–1023 (2016).

  18. 18.

    Vega-rua, A. et al. High efficiency of temperate Aedes albopictus to transmit chikungunya and dengue viruses in the Southeast of France. PLoS ONE 8, e59716 (2013).

  19. 19.

    Gloria-soria, A. et al. Global genetic diversity of Aedes aegypti. Mol. Ecol. 25, 5377–5395 (2016).

  20. 20.

    Padilla, D. K., Chotkowski, M. A. & Buchan, L. A. J. Predicting the spread of zebra mussels (Dreissena polymorpha) to inland waters using boater movement patterns. Glob. Ecol. Biogeogr. Lett. 5, 353–359 (1996).

  21. 21.

    Roche, B. et al. The spread of Aedes albopictus in metropolitan France: contribution of environmental drivers and human activities and predictions for a near future. PLoS ONE 10, e0125600 (2015).

  22. 22.

    Behrens, J. J. W. & Moore, C. G. Using geographic information systems to analyze the distribution and abundance of Aedes aegypti in Africa: the potential role of human travel in determining the intensity of mosquito infestation. Int. J. Appl. Geospatial Res. 4, 9–38 (2013).

  23. 23.

    Tizzoni, M. et al. On the use of human mobility proxies for modeling epidemics. PLoS Comput. Biol. 10, e1003716 (2014).

  24. 24.

    Simini, F., González, M. C., Maritan, A. & Barabási, A.-L. A universal model for mobility and migration patterns. Nature 484, 96–100 (2012).

  25. 25.

    Simini, F., Maritan, A. & Néda, Z. Human mobility in a continuum approach. PLoS ONE 8, e60069 (2013).

  26. 26.

    Canali, M., Rivas-Morales, S., Beutels, P. & Venturelli, C. The cost of Arbovirus disease prevention in Europe: area-wide integrated control of tiger mosquito, Aedes albopictus, in Emilia-Romagna, Northern Italy. Int. J. Environ. Res. Public Health 14, 444 (2017).

  27. 27.

    Leishnam, P. T., Lounibos, L. P., O’Meara, G. F. & Juliano, S. A. Interpopulation divergence in competitive interactions of the mosquito Aedes albopictus. Ecology 90, 2405–2413 (2009).

  28. 28.

    Camara, D. C. P. et al. Seasonal differences in density but similar competitive impact of Ae. albopictus (Skuse) and Aedes aegypti (L.) in Rio de Janeiro, Brazil. PLoS ONE 11, e0157120 (2016).

  29. 29.

    Lounibos, L. P. et al. Does temperature affect the outcome of larval competition between Aedes aegypti and Aedes albopictus? J. Vector Ecol. 27, 86–95 (2002).

  30. 30.

    Prinzing, A., Durka, W., Klotz, S. & Brandl, R. Geographic variability of ecological niches of plant species: are competition and stress relevant? Ecography 25, 721–729 (2002).

  31. 31.

    Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).

  32. 32.

    Kraemer, M. U. G. et al. Big city, small world: density, contact rates, and transmission of dengue across Pakistan. J. R. Soc. Interface 12, 20150468 (2015).

  33. 33.

    Kraemer, M. U. G. et al. Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015–16: a modelling study. Lancet Infect. Dis. 17, 330–338 (2017).

  34. 34.

    Perkins, T. A., Siraj, A. S., Ruktanonchai, C. W., Kraemer, M. U. G. & Tatem, A. J. Model-based projections of Zika virus infections in childbearing women in the Americas. Nat. Microbiol. 1, 16126 (2016).

  35. 35.

    Bogoch, I. I. et al. Potential for Zika virus introduction and transmission in resource limited countries in Africa and Asia-Pacific. Lancet Infect. Dis. 16, 1237–1245 (2016).

  36. 36.

    Bogoch, I. I. et al. Anticipating the international spread of Zika virus from Brazil. Lancet 387, 335–336 (2016).

  37. 37.

    Messina, J. P. et al. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol. 22, 138–146 (2014).

  38. 38.

    Kraemer, M. U. et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2, 150035 (2015).

  39. 39.

    Schaffner, F. et al. Development of guidelines for the surveillance of invasive mosquitoes in Europe. Parasit. Vectors 6, 209 (2013).

  40. 40.

    Moore, C. G. & Mitchell, C. J. Aedes albopictus in the United States: ten-year presence and public health implications. Emerg. Infect. Dis. 3, 329–334 (1997).

  41. 41.

    Flacio, E., Engeler, L., Tonolla, M., Lüthy, P. & Patocchi, N. Strategies of a thirteen year surveillance programme on Aedes albopictus (Stegomyia albopicta) in southern Switzerland. Parasit. Vectors 8, 208 (2015).

  42. 42.

    Collantes, F. et al. Review of ten-years presence of Aedes albopictus in Spain 2004–2014 : known distribution and public health concerns. Parasit. Vectors 8, 655 (2015).

  43. 43.

    Eritja, R., Palmer, J. R. B., Roiz, D., Sanpera-Calbet, I. & Bartumeus, F. Direct evidence of adult Aedes albopictus dispersal by car. Sci. Rep. 7, 14399 (2017).

  44. 44.

    Salje, H. et al. Dengue diversity across spatial and temporal scales: local structure and the effect of host population size. Science 355, 1302–1306 (2017).

  45. 45.

    Kraemer, M. U. G. et al. The global compendium of Aedes aegypti and Ae . albopictus occurrence. Sci. Data 2, 150035 (2015).

  46. 46.

    Brady, O. J. et al. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasit. Vectors 7, 338 (2014).

  47. 47.

    Brady, O. J. et al. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasit. Vectors 6, 351 (2013).

  48. 48.

    IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  49. 49.

    Adoption of the Paris Agreement. 21st Conference of the Parties (United Nations Framework Convention on Climate Change (UNFCCC), 2015).

  50. 50.

    Linard, C., Tatem, A. J. & Gilbert, M. Modelling spatial patterns of urban growth in Africa. Appl. Geogr. 44, 23–32 (2013).

  51. 51.

    United Nations Population Division. World Urbanization Prospects: The 2014 Revision (United Nations, 2014).

  52. 52.

    Hahn, M. B. et al. Reported distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in the United States, 1995–2016 (Diptera: Culicidae). J. Med. Entomol. 53, 1169–1175 (2016).

  53. 53.

    Golding, N., Schofield, A. & Kraemer, M. U. G. Movement: Functions for the analysis of movement data in disease modelling and mapping. R package version 02 (2015).

  54. 54.

    Osório, H. et al. Detection of the invasive mosquito species Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Portugal. Int. J. Environ. Res. Public Health 2018 15, 820 (2018).

  55. 55.

    Ruktanonchai, N. W. et al. Identifying malaria transmission foci for elimination using human mobility data. PLoS Comput. Biol. 12, e1004846 (2016).

  56. 56.

    Viboud, C. et al. Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 312, 447–451 (2006).

  57. 57.

    Tisseuil, C. et al. Evaluating methods to quantify spatial variation in the velocity of biological invasions. Ecography 39, 409–418 (2015).

  58. 58.

    Berman, M. & Diggle, P. Estimating weighted integrals of the second-order intensity of a spatial point process. J. R. Stat. Soc. Ser. B 51, 81–92 (1989).

  59. 59.

    Kraemer, M. U. G. et al. Data from: the global compendium of Aedes aegypti and Ae. albopictus occurrence. Dryad https://doi.org/10.5061/dryad.47v3c.1 (2015).

  60. 60.

    Phillips, S. J. et al. Sample selection bias and presence-only distribution model: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

  61. 61.

    R Core Team. R: A language and environment for computing (R Foundation for Statistical Computing; 2016).

  62. 62.

    Golding, N. Streamlined functions for species distribution modelling in the seeg research group. R package version 01-3 (2014).

  63. 63.

    Perkins, T. A., Scott, T. W., Le Menach, A. & Smith, D. L. Heterogeneity, mixing, and the spatial scales of mosquito-borne pathogen transmission. PLoS Comput. Biol. 9, e1003327 (2013).

  64. 64.

    Brockmann, D. & Helbing, D. The hidden geometry of complex, network-driven contagion phenomena. Science 342, 1337–1342 (2013).

  65. 65.

    Jongejans, E. et al. A unifying gravity framework for dispersal. Theor. Ecol. 8, 207–223 (2015).

  66. 66.

    Wesolowski, A., O’Meara, W. P., Eagle, N., Tatem, A. J. & Buckee, C. O. Evaluating spatial interaction models for regional mobility in Sub-Saharan Africa. PLoS Comput. Biol. 11, e1004267 (2015).

  67. 67.

    Wesolowski, A. et al. Commentary: Containing the Ebola outbreak—the potential and challenge of mobile network data. PLoS Curr. Outbreaks https://doi.org/10.1371/currents.outbreaks.0177e7fcf52217b8b634376e2f3efc5e (2014).

  68. 68.

    Tatem, A. J., Hemelaar, J., Gray, R. R. & Salemi, M. Spatial accessibility and the spread of HIV-1 subtypes and recombinants. AIDS 26, 2351–2360 (2012).

  69. 69.

    WorldPop Project; http://worldpop.org.uk/ (Date accessed: 22 February, 2018).

  70. 70.

    Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (CRC, Boca Raton, 1990).

  71. 71.

    Linacre, E. T. A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agric. Meteorol. 18, 409–424 (1977).

  72. 72.

    Medley, K. A. Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Glob. Ecol. Biogeogr. 19, 122–133 (2010).

  73. 73.

    Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).

  74. 74.

    Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 338, 1344–1348 (2012).

  75. 75.

    Neill, B. C. O. et al. A new scenario framework for climate change research : the concept of shared socioeconomic pathways. Clim. Change 122, 387–400 (2014).

  76. 76.

    Kc, S. & Lutz, W. Demographic scenarios by age, sex and education. Popul. Environ. 35, 243–260 (2014).

Download references


The authors thank S. Ray for providing comments during the revision process. M.U.G.K. acknowledges funding from the Society in Science, The Branco Weiss Fellowship, administered by the ETH Zurich. M.U.G.K. also acknowledges funding from the Training Grant from the National Institute of Child Health and Human Development (T32HD040128). M.U.G.K., S.I.H., J.P.M., N.G., O.J.B. and G.R.W.W. acknowledge funding from the International Research Consortium on Dengue Risk Assessment Management and Surveillance (IDAMS; European Commission 7th Framework Programme no. 21893). O.B.J. was funded by a Sir Henry Wellcome Fellowship funded by the Wellcome Trust (grant number 206471/Z/17/Z) and a grant from the Bill and Melinda Gates Foundation (OP1183567). S.I.H. received a grant from the Research for Health in Humanitarian Crises (R2HC) Programme, managed by Enhancing Learning and Research for Humanitarian Assistance (ELRHA; no. 13468), which also supported M.U.G.K. and N.G. The R2HC programme aims to improve health outcomes by strengthening the evidence base for public health interventions in humanitarian crises. The £8 million R2HC programme is funded equally by the Wellcome Trust and Department of International Development (DFiD), with ELRHA overseeing the programme’s execution and management. S.I.H. was also funded by a Senior Research Fellowship from the Wellcome Trust (no. 95066) and grants from the Bill & Melinda Gates Foundation (OPP1106023, OPP1093011, OPP1132415 and OPP1159934). This study was made possible by the support of the American people through the US Agency for International Development Emerging Pandemic Threats Program-2 PREDICT-2 (Cooperative Agreement number AID-OAA-A-14-00102), which also supported M.U.G.K. J.S.B. is supported by the National Library of Medicine of the National Institutes of Health (R01LM010812 and R01LM011965), which also supports M.U.G.K. D.L.S. is funded by the National Institutes of Health and National Institute of Allergy and Infectious Diseases (no. U10AI089674). H.H.N. was funded by the European Commission through the European Research Council Advanced Investigator Grant ‘Momentum’ 324247. L.L. received funding from the French Government’s Investissement d’Avenir program, Laboratoire d’Excellence Integrative Biology of Emerging Infectious Diseases (grant ANR-10-LABX-62-IBEID), the French Agence Nationale de la Recherche (grant ANR-16-CE35-0004), the City of Paris Emergence(s) programme in Biomedical Research, and the European Union’s Horizon 2020 research and innovation programme under ZikaPLAN grant agreement No. 734584. S.C. received funding from the AXA Research Fund, the Investissement d’Avenir program, the Laboratoire d’Excellence Integrative Biology of Emerging Infectious Diseases program (Grant ANR-10-LABX-62-IBEID), the Models of Infectious Disease Agent Study of the National Institute of General Medical Sciences, the INCEPTION project (PIA/ANR-16-CONV-0005), and the European Union’s Horizon 2020 research and innovation programme under ZIKAlliance grant agreement No 734548. N.G. is supported by a University of Melbourne McKenzie fellowship. W.V.B., G.H. and F.S. acknowledge funding from VBORNET and VectorNet, an ECDC and EFSA-funded project (no. ECDC/09/018 and OC/EFSA/AHAW/2013/02), and thank all contributing VBORNET and VectorNet experts for data sharing. T.W.S., R.C.R. and L.L. received funding from the National Institutes of Health Program Project grant (no. P01 AI098670). X.L. is supported by the Natural Science Foundation of China (71771213, 71522014, 71725001, 91846301 and 71790615). This work was also partially supported by the European Union’s Horizon 2020 Research and Innovation Programme under ZIKAlliance Grant Agreement no. 734548.

Author information

Author notes

  1. These authors contributed equally: Moritz U. G. Kraemer, Robert C. Reiner Jr, Oliver J. Brady, Jane P. Messina, Marius Gilbert.

  2. These authors jointly supervised this work: Simon I. Hay, Nick Golding.


  1. Department of Zoology, University of Oxford, Oxford, UK

    • Moritz U. G. Kraemer
    • , Nuno R. Faria
    • , Oliver G. Pybus
    •  & G. R. William Wint
  2. Harvard Medical School, Harvard University, Boston, MA, USA

    • Moritz U. G. Kraemer
    •  & John S. Brownstein
  3. Boston Children’s Hospital, Boston, MA, USA

    • Moritz U. G. Kraemer
    •  & John S. Brownstein
  4. Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA

    • Robert C. Reiner Jr
    • , David M. Pigott
    • , Kimberly Johnson
    • , Lucas Earl
    • , Laurie B. Marczak
    • , Shreya Shirude
    • , Nicole Davis Weaver
    • , David L. Smith
    •  & Simon I. Hay
  5. Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK

    • Oliver J. Brady
  6. Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK

    • Oliver J. Brady
  7. School of Geography and the Environment, University of Oxford, Oxford, UK

    • Jane P. Messina
  8. Oxford School of Global and Area Studies, University of Oxford, Oxford, UK

    • Jane P. Messina
  9. Spatial Epidemiology Lab (SpELL), Universite Libre de Bruxelles, Brussels, Belgium

    • Marius Gilbert
    •  & Catherine Linard
  10. Fonds National de la Recherche Scientifique, Brussels, Belgium

    • Marius Gilbert
  11. Department of Statistics, Harvard University, Cambridge, MA, USA

    • Dingdong Yi
  12. RTI International, Washington, DC, USA

    • Donal Bisanzio
  13. Epidemiology and Public Health Division, School of Medicine, University of Nottingham, Nottingham, UK

    • Donal Bisanzio
  14. Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA

    • T. Alex Perkins
  15. School of Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China

    • Shengjie Lai
    •  & Hongjie Yu
  16. Department of Geography and Environment, University of Southampton, Southampton, UK

    • Shengjie Lai
    •  & Andrew J. Tatem
  17. Flowminder Foundation, Stockholm, Sweden

    • Shengjie Lai
    • , Linus Bengtsson
    • , Erik Wetter
    •  & Andrew J. Tatem
  18. School of Business, Central South University, Changsha, China

    • Xin Lu
  19. College of Systems Engineering, National University of Defense Technology, Changsha, China

    • Xin Lu
  20. School of Business Administration, Southwestern University of Finance and Economics, Chengdu, China

    • Xin Lu
  21. Waen Associates Ltd, Y Waen, Islaw’r Dref, Dolgellau, Gwynedd, UK

    • Peter Jones
  22. Pan American Health Organization (PAHO), Washington, DC, USA

    • Giovanini E. Coelho
  23. National Dengue Control Program, Ministry of Health, Brasilia, Brazil

    • Roberta G. Carvalho
  24. European Centre for Disease Prevention and Control, Stockholm, Sweden

    • Wim Van Bortel
  25. Institute of Tropical Medicine, Antwerp, Belgium

    • Wim Van Bortel
  26. Avia-GIS, Zoersel, Belgium

    • Cedric Marsboom
    •  & Guy Hendrickx
  27. Francis Schaffner Consultancy, Riehen, Switzerland

    • Francis Schaffner
  28. Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA

    • Chester G. Moore
  29. Computational Social Science, ETH Zurich, Zurich, Switzerland

    • Heinrich H. Nax
  30. Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden

    • Linus Bengtsson
  31. Stockholm School of Economics, Stockholm, Sweden

    • Erik Wetter
  32. Insect–Virus Interactions Unit, Institut Pasteur, CNRS, UMR2000, Paris, France

    • Louis Lambrechts
  33. Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, CNRS, UMR2000, Paris, France

    • Simon Cauchemez
  34. Department of Geography, Universite de Namur, Namur, Belgium

    • Catherine Linard
  35. Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA

    • Thomas W. Scott
  36. State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China

    • Qiyong Liu
  37. Shandong University Climate Change and Health Center, School of Public Health, Shandong University, Jinan, Shandong, China

    • Qiyong Liu
  38. WHO Collaborating Centre for Vector Surveillance and Management, Beijing, China

    • Qiyong Liu
  39. Chongqing Centre for Disease Control and Prevention, Chongqing, China

    • Qiyong Liu
  40. Environmental Research Group Oxford (ERGO), Department of Zoology, Oxford University, Oxford, UK

    • G. R. William Wint
  41. School of BioSciences, University of Melbourne, Parkville, Victoria, Australia

    • Nick Golding


  1. Search for Moritz U. G. Kraemer in:

  2. Search for Robert C. Reiner Jr in:

  3. Search for Oliver J. Brady in:

  4. Search for Jane P. Messina in:

  5. Search for Marius Gilbert in:

  6. Search for David M. Pigott in:

  7. Search for Dingdong Yi in:

  8. Search for Kimberly Johnson in:

  9. Search for Lucas Earl in:

  10. Search for Laurie B. Marczak in:

  11. Search for Shreya Shirude in:

  12. Search for Nicole Davis Weaver in:

  13. Search for Donal Bisanzio in:

  14. Search for T. Alex Perkins in:

  15. Search for Shengjie Lai in:

  16. Search for Xin Lu in:

  17. Search for Peter Jones in:

  18. Search for Giovanini E. Coelho in:

  19. Search for Roberta G. Carvalho in:

  20. Search for Wim Van Bortel in:

  21. Search for Cedric Marsboom in:

  22. Search for Guy Hendrickx in:

  23. Search for Francis Schaffner in:

  24. Search for Chester G. Moore in:

  25. Search for Heinrich H. Nax in:

  26. Search for Linus Bengtsson in:

  27. Search for Erik Wetter in:

  28. Search for Andrew J. Tatem in:

  29. Search for John S. Brownstein in:

  30. Search for David L. Smith in:

  31. Search for Louis Lambrechts in:

  32. Search for Simon Cauchemez in:

  33. Search for Catherine Linard in:

  34. Search for Nuno R. Faria in:

  35. Search for Oliver G. Pybus in:

  36. Search for Thomas W. Scott in:

  37. Search for Qiyong Liu in:

  38. Search for Hongjie Yu in:

  39. Search for G. R. William Wint in:

  40. Search for Simon I. Hay in:

  41. Search for Nick Golding in:


All contributions are listed in the order of authorship. M.U.G.K., R.C.R., O.J.B., S.I.H. and N.G. designed the experiments. S.L., X.L., C.M., K.J., L.E., J.S.B., C.L., P.J., G.E.C., L.B., E.W., A.J.T., R.G.C., W.V.B., G.H., F.S., C.G.M., Q.L., G.R.W.W. and H.Y. provided data. M.U.G.K., R.C.R., O.J.B., J.P.M. and M.G. analysed the data. M.U.G.K., R.C.R., O.J.B., J.P.M., M.G., D.Y., D.B., T.A.P., H.H.N., D.L.S., L.L., S.C., N.R.F., O.G.P., T.W.S., G.R.W.W., S.I.H. and N.G. interpreted the results. J.P.M., L.B.M., S.S., N.D.W., D.M.P., G.R.W.W. and S.I.H. edited the manuscript. M.U.G.K., O.J.B., O.G.P., S.I.H. and N.G. wrote the manuscript. All authors read and approved the content of the manuscript.

Competing interest

The authors declare no competing interests.

Corresponding authors

Correspondence to Moritz U. G. Kraemer or Simon I. Hay or Nick Golding.

Supplementary information

  1. Supplementary Information

    Supplementary Notes, Supplementary Figures 1–13, Supplementary Tables 1–9 and Supplementary References.

  2. Reporting Summary

About this article

Publication history