Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Legionella pneumophila inhibits immune signalling via MavC-mediated transglutaminase-induced ubiquitination of UBE2N

Abstract

The bacterial pathogen Legionella pneumophila modulates host immunity using effectors translocated by its Dot/Icm transporter to facilitate its intracellular replication. A number of these effectors employ diverse mechanisms to interfere with protein ubiquitination, a post-translational modification essential for immunity. Here, we have found that L. pneumophila induces monoubiquitination of the E2 enzyme UBE2N by its Dot/Icm substrate MavC(Lpg2147). We demonstrate that MavC is a transglutaminase that catalyses covalent linkage of ubiquitin to Lys92 and Lys94 of UBE2N via Gln40. Similar to canonical transglutaminases, MavC possess deamidase activity that targets ubiquitin at Gln40. We identified Cys74 as the catalytic residue for both ubiquitination and deamidation activities. Furthermore, ubiquitination of UBE2N by MavC abolishes its activity in the formation of K63-type polyubiquitin chains, which dampens NF-κB signalling in the initial phase of bacterial infection. Our results reveal an unprecedented mechanism of modulating host immunity by modifying a key ubiquitination enzyme by ubiquitin transglutamination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: L. pneumophila induces a molecular weight shift in UBE2N in a process that requires the Dot/Icm effector MavC.
Fig. 2: MavC induces UBE2N ubiquitination independently of the canonical ubiquitination machinery.
Fig. 3: MavC catalyses ubiquitination of UBE2N by transglutamination.
Fig. 4: Characteristics of MavC as transglutaminase and ubiquitin deamidase.
Fig. 5: Effects of MavC on UBE2N activity and on NF-κB activation during L. pneumophila infection.
Fig. 6: Effects of MavC on NF-κB activation in cells overexpressing various relevant proteins.

Similar content being viewed by others

Data availability

The data that support the conclusions of this study are included in this published article along with its Supplementary Information files, and are also available from the corresponding author upon request.

References

  1. Isberg, R. R., O’Connor, T. J. & Heidtman, M. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat. Rev. Microbiol. 7, 13–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Losick, V. P. & Isberg, R. R. NF-κB translocation prevents host cell death after low-dose challenge by Legionella pneumophila. J. Exp. Med. 203, 2177–2189 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bartfeld, S. et al. Temporal resolution of two-tracked NF-κB activation by Legionella pneumophila. Cell Microbiol. 11, 1638–1651 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Abu-Zant, A. et al. Anti-apoptotic signalling by the Dot/Icm secretion system of L. pneumophila. Cell Microbiol. 9, 246–264 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Ge, J. et al. A Legionella type IV effector activates the NF-κB pathway by phosphorylating the IκB family of inhibitors. Proc. Natl Acad. Sci. USA 106, 13725–13730 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Losick, V. P., Haenssler, E., Moy, M. Y. & Isberg, R. R. LnaB: a Legionella pneumophila activator of NF-κB. Cell Microbiol. 12, 1083–1097 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang, X. & Chen, Z. J. The role of ubiquitylation in immune defence and pathogen evasion. Nat. Rev. Immunol. 12, 35–48 (2011).

    Article  PubMed  Google Scholar 

  8. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Maculins, T., Fiskin, E., Bhogaraju, S. & Dikic, I. Bacteria–host relationship: ubiquitin ligases as weapons of invasion. Cell Res. 26, 499–510 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cui, J. et al. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science 329, 1215–1218 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qiu, J. & Luo, Z. Q. Legionella and Coxiella effectors: strength in diversity and activity. Nat. Rev. Microbiol. 15, 591–605 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Qiu, J. et al. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature 533, 120–124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bhogaraju, S. et al. Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell 167, 1636–1649 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Kotewicz, K. M. et al. A single Legionella effector catalyzes a multistep ubiquitination pathway to rearrange tubular endoplasmic reticulum for replication. Cell. Host Microbe 21, 169–181 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Hodge, C. D., Spyracopoulos, L. & Glover, J. N. Ubc13: the Lys63 ubiquitin chain building machine. Oncotarget 7, 64471–64504 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. O’Connor, T. J., Adepoju, Y., Boyd, D. & Isberg, R. R. Minimization of the Legionella pneumophila genome reveals chromosomal regions involved in host range expansion. Proc. Natl Acad. Sci. USA 108, 14733–14740 (2011).

    Article  PubMed  Google Scholar 

  17. Huang, L. et al. The E block motif is associated with Legionella pneumophila translocated substrates. Cell Microbiol. 13, 227–245 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Eddins, M. J., Carlile, C. M., Gomez, K. M., Pickart, C. M. & Wolberger, C. Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat. Struct. Mol. Biol. 13, 915–920 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Lorand, L. & Graham, R. M. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat. Rev. Mol. Cell Biol. 4, 140–156 (2003).

    Article  CAS  Google Scholar 

  20. Keillor, J. W., Clouthier, C. M., Apperley, K. Y., Akbar, A. & Mulani, A. Acyl transfer mechanisms of tissue transglutaminase. Bioorg. Chem. 57, 186–197 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Klock, C. & Khosla, C. Regulation of the activities of the mammalian transglutaminase family of enzymes. Protein Sci. 21, 1781–1791 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Eckert, R. L. et al. Transglutaminase regulation of cell function. Physiol. Rev. 94, 383–417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, Z. J. Ubiquitin signalling in the NF-κB pathway. Nat. Cell Biol. 7, 758–765 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou, H. et al. Bcl10 activates the NF-κB pathway through ubiquitination of NEMO. Nature 427, 167–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, X., Fitzgerald, K., Kurt-Jones, E., Finberg, R. & Knipe, D. M. Herpesvirus tegument protein activates NF-κB signaling through the TRAF6 adaptor protein. Proc. Natl Acad. Sci. USA 105, 11335–11339 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Sanada, T. et al. The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature 483, 623–626 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312, 1211–1214 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Stewart, M. D., Ritterhoff, T., Klevit, R. E. & Brzovic, P. S. E2 enzymes: more than just middle men. Cell Res. 26, 423–440 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ye, Y. & Rape, M. Building ubiquitin chains: E2 enzymes at work. Nat. Rev. Mol. Cell Biol. 10, 755–764 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zou, W. et al. ISG15 modification of ubiquitin E2 Ubc13 disrupts its ability to form thioester bond with ubiquitin. Biochem. Biophys. Res. Commun. 336, 61–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Takeuchi, T. & Yokosawa, H. ISG15 modification of Ubc13 suppresses its ubiquitin-conjugating activity. Biochem. Biophys. Res. Commun. 336, 9–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Machida, Y. J. et al. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol. Cell 23, 589–596 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Rape, M. & Kirschner, M. W. Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature 432, 588–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Ravid, T. & Hochstrasser, M. Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nat. Cell Biol. 9, 422–427 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Valleau, D. et al. Discovery of ubiquitin deamidases in the pathogenic arsenal of Legionella pneumophila. Cell Rep. 23, 568–583 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Urbanus, M. L. et al. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila. Mol. Syst. Biol. 12, 893 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Berger, K. H. & Isberg, R. R. Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol. Microbiol. 7, 7–19 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Luo, Z. Q. & Isberg, R. R. Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc. Natl Acad. Sci. USA 101, 841–846 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Xu, L. et al. Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog. 6, e1000822 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sheedlo, M. J. et al. Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination. Proc. Natl Acad. Sci. USA 112, 15090–15095 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Gotze, M. et al. StavroX—a software for analyzing crosslinked products in protein interaction studies. J. Am. Soc. Mass. Spectrom. 23, 76–87 (2012).

    Article  PubMed  Google Scholar 

  43. Li, X. et al. Negative regulation of hepatic inflammation by the soluble resistance-related calcium-binding protein via signal transducer and activator of transcription 3. Front. Immunol. 8, 709 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank R. Isberg (Tufts School of Medicine) for bacterial strains, F. Shao (National Institute for Biological Sciences, Beijing) for plasmids, and R. Moore and A. Shukla at the Pacific Northwest National Laboratory (PNNL) for technical support. This work was supported by National Institutes of Health grants R01AI127465(ZQL), R21AI117205 (PJH and ZQL) and GM103493. Part of this work was performed in the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a Department of Energy (DOE) office of Biological and Environmental Research (BER) National User Facility located at the PNNL.

Author information

Authors and Affiliations

Authors

Contributions

N.G. and Z.-Q.L. conceived the ideas for this work. N.G. planned and performed experiments. N.G., E.S.N., P.J.H. and Z.-Q.L. interpreted the data. E.S.N. performed mass spectrometric analyses. N.G. and Z.-Q.L. wrote the manuscript and all authors provided editorial input.

Corresponding author

Correspondence to Zhao-Qing Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–11.

Reporting Summary

Supplementary Table 1

Proteins potentially modified by 3×Ub-AA in mammalian cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, N., Nakayasu, E.S., Hollenbeck, P.J. et al. Legionella pneumophila inhibits immune signalling via MavC-mediated transglutaminase-induced ubiquitination of UBE2N. Nat Microbiol 4, 134–143 (2019). https://doi.org/10.1038/s41564-018-0282-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0282-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing