Resource limitation is a fundamental factor governing the composition and function of ecological communities. However, the role of resource supply in structuring the intestinal microbiome has not been established and represents a challenge for mammals that rely on microbial symbionts for digestion: too little supply might starve the microbiome while too much might starve the host. We present evidence that microbiota occupy a habitat that is limited in total nitrogen supply within the large intestines of 30 mammal species. Lowering dietary protein levels in mice reduced their faecal concentrations of bacteria. A gradient of stoichiometry along the length of the gut was consistent with the hypothesis that intestinal nitrogen limitation results from host absorption of dietary nutrients. Nitrogen availability is also likely to be shaped by host–microbe interactions: levels of host-secreted nitrogen were altered in germ-free mice and when bacterial loads were reduced via experimental antibiotic treatment. Single-cell spectrometry revealed that members of the phylum Bacteroidetes consumed nitrogen in the large intestine more readily than other commensal taxa did. Our findings support a model where nitrogen limitation arises from preferential host use of dietary nutrients. We speculate that this resource limitation could enable hosts to regulate microbial communities in the large intestine. Commensal microbiota may have adapted to nitrogen-limited settings, suggesting one reason why excess dietary protein has been associated with degraded gut-microbial ecosystems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The 16S rRNA gene nucleotide sequences generated in this study can be downloaded from the European Nucleotide Archive under study accession numbers PRJEB26478 (protein manipulation and NanoSIMS experiments) and PRJEB26446 (antibiotics experiment). NanoSIMS and bulk isotopic data for the dietary and injected 15N study is included in Supplementary Table 4. Other data that support these findings are available from the corresponding author upon request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    McFall-Ngai, M. Adaptive immunity: care for the community. Nature 1145, 153 (2007).

  2. 2.

    Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).

  3. 3.

    Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).

  4. 4.

    Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10, 159–169, https://doi.org/10.1038/nri2710 (2010).

  5. 5.

    Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host–bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

  6. 6.

    Fuller, M. F. & Reeds, P. J. Nitrogen cycling in the gut. Annu. Rev. Nutr. 18, 385–411 (1998).

  7. 7.

    Walter, J. & Ley, R. The human gut microbiome: ecology and recent evolutionary changes. Annu. Rev. Microbiol. 65, 411–429 (2011).

  8. 8.

    Carmody, R. N. & Turnbaugh, P. J. Gut microbes make for fattier fish. Cell Host Microbe 12, 259–261 (2012).

  9. 9.

    Borgstrom, B., Dahlqvist, A., Lundh, G. & Sjovall, J. Studies of intestinal digestion and absorption in the human. J. Clin. Invest. 36, 1521–1536 (1957).

  10. 10.

    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).

  11. 11.

    Gardner, M. L. G. Gastrointestinal absorption of intact proteins. Annu. Rev. Nutr. 8, 329–350 (1988).

  12. 12.

    Ferraris, R. P. & Carey, H. V. Intestinal transport during fasting and malnutrition. Annu. Rev. Nutr. 20, 195–219 (2000).

  13. 13.

    Lilburn, T. G. et al. Nitrogen fixation by symbiotic and free-living spirochetes. Science 292, 2495–2498 (2001).

  14. 14.

    Vecherskii, M. V., Naumova, E. I., Kostina, N. V. & Umarov, M. M. Some specific features of nitrogen fixation in the digestive tract of the European beaver (Castor fiber). Dokl. Biol. Sci. 411, 452–454 (2006).

  15. 15.

    Wostman, B. S. The germ-free animal in nutritional studies. Annu. Rev. Nutr. 1, 257–279 (1981).

  16. 16.

    Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton Univ. Press, Princeton, 2002).

  17. 17.

    Frost, P. C. & Elser, J. J. Growth response of littoral mayflies to the phosphorus content of their food. Ecol. Lett. 5, 232–240 (2002).

  18. 18.

    Elser, J. J. et al. Growth rate–stoichiometry couplings in diverse biota. Ecol. Lett. 6, 936–943 (2003).

  19. 19.

    Fink, P. & Von Elert, E. Physiological responses to stoichiometric constraints: nutrient limitation and compensatory feeding in a freshwater snail. Oikos 115, 484–494 (2006).

  20. 20.

    Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton Univ. Press, Princeton, 2012).

  21. 21.

    Le Couteur, D. et al. The influence of macronutrients on splanchnic and hepatic lymphocytes in aging mice. J. Gerontol. A Biol. 70, 1499–1507 (2014).

  22. 22.

    Solon-Biet, S. M. et al. Macronutrient balance, reproductive function and lifespan in aging mice. Proc. Natl Acad. Sci. USA 112, 3481–3486 (2015).

  23. 23.

    Holmes, A. J. et al. Diet-microbiome interactions in health are controlled by intestinal nitrogen source constraints. Cell Metab. 25, 140–151 (2017).

  24. 24.

    Zimmerman, A. E., Allison, S. D. & Martiny, A. C. Phylogenetic constraints on elemental stoichiometry and resource allocation in heterotrophic marine bacteria. Environ. Microbiol. 16, 1398–1410 (2013).

  25. 25.

    Mouginot, C. et al. Elemental stoichiometry of Fungi and Bacteria strains from grassland leaf litter. Soil Biol. Biochem. 76, 278–285 (2014).

  26. 26.

    Stephen, A. M. & Cummings, J. H. The microbial contribution to human faecal mass. J. Med. Microbiol. 13, 45–56 (1980).

  27. 27.

    Tjoelker, M. G., Craine, J. M., Wedin, D., Reich, P. B. & Tilman, D. Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol. 167, 493–508 (2005).

  28. 28.

    Kartzinel, T. R. et al. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proc. Natl Acad. Sci. USA 112, 8019–8024 (2015).

  29. 29.

    Kleynhans, E. J., Jolles, A. E., Bos, M. & Olff, H. Resource partitioning along multiple niche dimensions in differently sized African savanna grazers. Oikos 120, 591–600 (2011).

  30. 30.

    Müller, D. W. H. et al. Assessing the Jarman–Bell Principle: scaling of intake, digestibility, retention time andgut fill with body mass in mammalian herbivores. Comp. Biochem. Phys. A 164, 129–140 (2013).

  31. 31.

    Hirakawa, H. Coprophagy in leporids and other mammalian herbivores. Mamm. Rev. 31, 61–80 (2001).

  32. 32.

    Kashyap, P. C. et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology 144, 967–977 (2013).

  33. 33.

    Reikvam, D. H. et al. Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS ONE 6, e17996 (2011).

  34. 34.

    Wlodarska, M. et al. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect. Immun. 79, 1536–1545 (2011).

  35. 35.

    Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

  36. 36.

    Johansson, M. E. et al. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host. Microbe 18, 582–592 (2015).

  37. 37.

    Li, H. et al. The outer mucus layer hosts a distinct intestinal microbial niche. Nat. Commun. 6, 3292 (2015).

  38. 38.

    Berry, D. et al. Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing. Proc. Natl Acad. Sci USA 110, 4720–4725 (2013).

  39. 39.

    Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6, 81 (2015).

  40. 40.

    Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6, 776–788 (2008).

  41. 41.

    den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiotaand host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).

  42. 42.

    Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).

  43. 43.

    Carey, H. V., Walters, W. A. & Knight, R. Seasonal restructuring of the ground squirrel gut microbiota over the annual hibernation cycle. Am. J. Physiol. Regul. Integ. Comp. Physiol. 304, R33–R42 (2013).

  44. 44.

    Costello, E. K., Gordon, J. I., Secor, S. M. & Knight, R. Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J. 4, 1375–1385 (2010).

  45. 45.

    McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).

  46. 46.

    Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012).

  47. 47.

    Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).

  48. 48.

    Kaspari, M. & Powers, J. S. Biogeochemistry and geographical ecology: embracing all twenty-five elements required to build organisms. Am. Nat. 188, S62–S73 (2016).

  49. 49.

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

  50. 50.

    Scott, K. P., Gratz, S. W., Sheridan, P. O., Flint, H. J. & Duncan, S. H. The influence of diet on the gut microbiota. Pharmacol. Res. 69, 52–60 (2013).

  51. 51.

    Smith, V. H., Tilman, G. D. & Nekola, J. C. Eutrophication: impacts of excess nutrient inputs on freshwater, marine and terrestrial ecosystems. Environ. Pollut. 100, 179–196 (1999).

  52. 52.

    Stevens, C. E. & Hume, I. D. Comparative Physiology of the Vertebrate Digestive System 2nd edn (Cambridge Univ. Press, Cambridge, 1995).

  53. 53.

    Pérez, W., Lima, M. & Clauss, M. Gross anatomicy of the intestine in the giraffe (Giraffa camelopardalis). Anat. Histol. Embryol. 38, 432–435 (2009).

  54. 54.

    Kararli, T. T. Comparison of the gastrointestinal anatomicy, physiology and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 16, 351–380 (1995).

  55. 55.

    Aust, G. et al. Mice overexpressing CD97 in intestinal epithelial cells provide a unique model for mammalian postnatal intestinal cylindrical growth. MBoC 24, 2256–2268 (2013).

  56. 56.

    Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

  57. 57.

    Bergström, A. et al. Introducing GUt Low-Density Array (GULDA) – a validated approach for qPCR-based intestinal microbial community analysis. FEMS Microbiol. Lett. 337, 38–47 (2012).

  58. 58.

    Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 3, e14 (2007).

  59. 59.

    De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).

  60. 60.

    Cerling, T. E., Harris, J. M. & Passey, B. H. Diets of East African Bovidae based on stable isotope analysis. J. Mammal. 84, 456–470 (2003).

  61. 61.

    Frank, J. A. et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microb. 74, 2461–2470 (2008).

  62. 62.

    Rettedal, E. A., Gumpert, H. & Sommer, M. O. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria. Nat. Commun. 5, 4714 (2014).

  63. 63.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).

  64. 64.

    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

  65. 65.

    Maurice, C. F., Haiser, H. J. & Turnbaugh, P. J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152, 39–50 (2013).

  66. 66.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  67. 67.

    Park, S. W. et al. The protein disulphide isomerase AGR2 is essential for production of intestinal mucus. Proc. Natl Acad. Sci. USA 106, 6950–6955 (2009).

  68. 68.

    McClatchy, D. B., Dong, M.-Q., Wu, C. C., Venable, J. D. & Yates, J. R. III 15N metabolic labelling of mammalian tissue with slow protein turnover. J.Proteome Res. 6, 2005–2010 (2007).

  69. 69.

    McClatchy, D. B., Liao, L., Park, S. K., Venable, J. D. & Yates, J. R. III Quantification of the synaptosomal proteome of the rat cerebellum during post-natal development. Genome Res. 17, 1378–1388 (2007).

  70. 70.

    Franks, A. H. et al. Variations of bacterial populations in human faeces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 64, 3336–3345 (1998).

  71. 71.

    Manz, W., Amann, R., Ludwig, W., Vancanneyt, M. & Schleifer, K. H. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga–Flavobacter–Bacteroides in the natural environment. Microbiology 142, 1097–1106 (1996).

  72. 72.

    Daims, H., Stoecker, K. & Wagner, M. in Molecular Microbial Ecology (eds Osborn, M. & Smith, C) Ch. 9 (Taylor & Francis, London, 2004).

  73. 73.

    Slodzian, G., Hillion, F., Stadermann, F. J. & Zinner, E. QSA influences on isotopic ratio measurements. Appl. Surf. Sci. 231, 874–877 (2004).

Download references


W. Cook carried out C/N ratio measurements in the Duke Environmental Isotope Laboratory. Samples were provided by S. Mills and D. Lafferty (snowshoe hare); E. Ehmke (lemurs); L. McGraw, A. Vogel and C. Clement (prairie vole); D. Koeberl, V. Sakach and L. Morgan (dog); C. Drea (meerkat). Statistical advice was provided by K. Choudhury and S. Mukherjee. The manuscript was improved thanks to comments from J. Heffernan, J. Rawls and P. Turnbaugh. This work was funded by an NSF Doctoral Dissertation Improvement grant to A.T.R., J.P.W. and L.A.D. (grant no. DEB-1501495) and grants from the Hartwell Foundation, Alfred P. Sloan Foundation and Searle Scholars Programme to L.A.D. A.T.R. was supported by the NSF Graduate Research Fellowship Programme under grant no. DGE 1106401. F.C.P. was supported by a European Research Council Marie Curie Individual Fellowship (grant no. 658718). D.B. was supported in part by Austrian Science Fund (grant nos. P26127-B20 and P27831-B28) and European Research Council (Starting Grant: FunKeyGut 741623). M.W. was supported by the European Research Council via the Advanced Grant project ‘NITRICARE 294343’. The contents of this paper are the responsibility of the authors and do not necessarily represent the views of the funding institutions.

Author information


  1. Department of Biology, Duke University, Durham, NC, USA

    • Aspen T. Reese
    • , Susan C. Alberts
    •  & Justin P. Wright
  2. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA

    • Aspen T. Reese
    • , Anchi Wu
    • , Sharon Jiang
    • , Heather K. Durand
    • , Anna Mae Diehl
    •  & Lawrence A. David
  3. Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria

    • Fátima C. Pereira
    • , Arno Schintlmeister
    • , David Berry
    •  & Michael Wagner
  4. Large-Instrument Facility for Advanced Isotope Research, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria

    • Arno Schintlmeister
    •  & Michael Wagner
  5. Department of Pathology, Duke University Medical Center, Durham, NC, USA

    • Laura P. Hale
  6. Department of Medicine, Duke University Medical Center, Durham, NC, USA

    • Xiyou Zhou
    • , Richard T. Premont
    •  & Anna Mae Diehl
  7. Department of Otolaryngology – Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA

    • Thomas M. O’Connell
  8. Department of Evolutionary Anthropology, Duke University, Durham, NC, USA

    • Susan C. Alberts
  9. Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya

    • Susan C. Alberts
  10. Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA

    • Tyler R. Kartzinel
  11. Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA

    • Robert M. Pringle
  12. Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA

    • Robert R. Dunn
  13. Center for Genomic and Computational Biology, Duke University, Durham, NC, USA

    • Lawrence A. David


  1. Search for Aspen T. Reese in:

  2. Search for Fátima C. Pereira in:

  3. Search for Arno Schintlmeister in:

  4. Search for David Berry in:

  5. Search for Michael Wagner in:

  6. Search for Laura P. Hale in:

  7. Search for Anchi Wu in:

  8. Search for Sharon Jiang in:

  9. Search for Heather K. Durand in:

  10. Search for Xiyou Zhou in:

  11. Search for Richard T. Premont in:

  12. Search for Anna Mae Diehl in:

  13. Search for Thomas M. O’Connell in:

  14. Search for Susan C. Alberts in:

  15. Search for Tyler R. Kartzinel in:

  16. Search for Robert M. Pringle in:

  17. Search for Robert R. Dunn in:

  18. Search for Justin P. Wright in:

  19. Search for Lawrence A. David in:


A.T.R., F.P., A.S., D.B. and M.W. carried out FISH / NanoSIMS work. A.T.R., X.Z. and R.P. performed diet manipulation experiments. L.P.H., S.J. and H.K.D. processed samples. T.M.O., S.C.A., T.R.K. and R.M.P. contributed data. A.T.R. performed all other experiments. A.M.D., R.R.D. and J.P.W. were involved in study design. A.T.R. and L.A.D. designed the study, analysed data and wrote the paper. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Lawrence A. David.


  1. Supplementary Information

    Supplementary Figures 1–7, Supplementary Tables 1–3, Supplementary Tables 5–9.

  2. Reporting Summary

  3. Supplementary Table 4

    Isotope data for single-cell and whole-gut contents for data presented in Fig. 3, Supplementary Fig. 7.

About this article

Publication history