Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biogenesis and structure of a type VI secretion baseplate


To support their growth in a competitive environment and cause pathogenesis, bacteria have evolved a broad repertoire of macromolecular machineries to deliver specific effectors and toxins. Among these multiprotein complexes, the type VI secretion system (T6SS) is a contractile nanomachine that targets both prokaryotic and eukaryotic cells. The T6SS comprises two functional subcomplexes: a bacteriophage-related tail structure anchored to the cell envelope by a membrane complex. As in other contractile injection systems, the tail is composed of an inner tube wrapped by a sheath and built on the baseplate. In the T6SS, the baseplate is not only the tail assembly platform, but also docks the tail to the membrane complex and hence serves as an evolutionary adaptor. Here we define the biogenesis pathway and report the cryo-electron microscopy (cryo-EM) structure of the wedge protein complex of the T6SS from enteroaggregative Escherichia coli (EAEC). Using an integrative approach, we unveil the molecular architecture of the whole T6SS baseplate and its interaction with the tail sheath, offering detailed insights into its biogenesis and function. We discuss architectural and mechanistic similarities but also reveal key differences with the T4 phage and Mu phage baseplates.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Composition of the T6SS wedges complex.
Fig. 2: Cryo-EM density map of the TssKFGE wedge complex.
Fig. 3: Structure of the TssKFGE complex.
Fig. 4: Structural model of the EAEC T6SS baseplate.
Fig. 5: Comparison between the T4 bacteriophage and T6SS baseplates.
Fig. 6: Schematic representation of the T6SS assembly pathway.

Data availability

The cryo-EM structures of the full complex TssKFG, TssK and TssFGE have been deposited in the Electron Microscopy Data Bank under ID codes EMD-0008, EMD-0010 and EMD-0009. The TssKFG, TssK and TssFGE models have been deposited in the PDB under ID codes PDB 6GIY, 6GJ3 and 6GJ1. Raw cryo-EM data are available on request.


  1. 1.

    Russell, A. B. et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475, 343–347 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Durand, E., Cambillau, C., Cascales, E. & Journet, L. VgrG, Tae, Tle, and beyond: the versatile arsenal of type VI secretion effectors. Trends Microbiol. 22, 498–507 (2014).

    CAS  Google Scholar 

  3. 3.

    Alcoforado Diniz, J., Liu, Y.-C. & Coulthurst, S. J. Molecular weaponry: diverse effectors delivered by the type VI secretion system. Cell Microbiol. 17, 1742–1751 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Russell, A. B., Peterson, S. B. & Mougous, J. D. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137–148 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Chassaing, B. & Cascales, E. Antibacterial weapons: targeted destruction in the microbiota. Trends Microbiol. 26, 329–338 (2018).

    CAS  Google Scholar 

  6. 6.

    Sana, T. G., Lugo, K. A. & Monack, D. M. T6SS: The bacterial ‘fight club’ in the host gut. PLoS Pathog. 13, e1006325 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Pukatzki, S., Ma, A. T., Revel, A. T., Sturtevant, D. & Mekalanos, J. J. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc. Natl Acad. Sci. USA 104, 15508–15513 (2007).

    CAS  PubMed  Google Scholar 

  8. 8.

    Durand, E. et al. Crystal structure of the VgrG1 actin cross-linking domain of the Vibrio cholerae type VI secretion system. J. Biol. Chem. 287, 38190–38199 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Sana, T. G. et al. Internalization of Pseudomonas aeruginosa strain PAO1 into epithelial cells is promoted by interaction of a T6SS effector with the microtubule network. mBio 6, e00712 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Ma, A. T., McAuley, S., Pukatzki, S. & Mekalanos, J. J. Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe 5, 234–243 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Leiman, P. G. & Shneider, M. M. Contractile tail machines of bacteriophages. Adv. Exp. Med. Biol. 726, 93–114 (2012).

    CAS  PubMed  Google Scholar 

  12. 12.

    Ge, P. et al. Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states. Nat. Struct. Mol. Biol. 22, 377–382 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Böck, D. et al. In situ architecture, function, and evolution of a contractile injection system. Science 357, 713–717 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Heymann, J. B. et al. Three-dimensional structure of the toxin-delivery particle antifeeding prophage of Serratia entomophila. J. Biol. Chem. 288, 25276–25284 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Shikuma, N. J. et al. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science 343, 529–533 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Cascales, E. Microbiology: and amoebophilus invented the machine gun! Curr. Biol. 27, R1170–R1173 (2017).

    CAS  PubMed  Google Scholar 

  17. 17.

    Brackmann, M., Wang, J. & Basler, M. Type VI secretion system sheath inter‐subunit interactions modulate its contraction. EMBO Rep. 19, 225–233 (2018).

    CAS  PubMed  Google Scholar 

  18. 18.

    Basler, M., Pilhofer, M., Henderson, G. P., Jensen, G. J. & Mekalanos, J. J. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483, 182–186 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Ballister, E. R., Lai, A. H., Zuckermann, R. N., Cheng, Y. & Mougous, J. D. In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc. Natl Acad. Sci. USA 105, 3733–3738 (2008).

    CAS  PubMed  Google Scholar 

  20. 20.

    Brunet, Y. R., Henin, J., Celia, H. & Cascales, E. Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep. 15, 315–321 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Leiman, P. G. et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl Acad. Sci. USA 106, 4154–4159 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Basler, M., Ho, B. T. & Mekalanos, J. J. Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 152, 884–894 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Ho, B. T., Basler, M. & Mekalanos, J. J. Type 6 secretion system-mediated immunity to type 4 secretion system-mediated gene transfer. Science 342, 250–253 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    LeRoux, M. et al. Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa. eLife 4, e05701 (2015).

    PubMed Central  Google Scholar 

  25. 25.

    Vettiger, A. & Basler, M. Type VI secretion system substrates are transferred and reused among sister cells. Cell 167, 99–110 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Zoued, A. et al. TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J. Biol. Chem. 288, 27031–27041 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Brunet, Y. R., Zoued, A., Boyer, F., Douzi, B. & Cascales, E. The type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization. PLoS Genet. 11, e1005545 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Nguyen, V. S. et al. Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex. Nat. Microbiol. 2, 17103 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Aschtgen, M.-S., Gavioli, M., Dessen, A., Lloubès, R. & Cascales, E. The SciZ protein anchors the enteroaggregative Escherichia coli type VI secretion system to the cell wall. Mol. Microbiol. 75, 886–899 (2010).

    CAS  Google Scholar 

  30. 30.

    Durand, E. et al. Biogenesis and structure of a type VI secretion membrane core complex. Nature 523, 555–560 (2015).

    CAS  Google Scholar 

  31. 31.

    Flaugnatti, N. et al. A phospholipase A 1 antibacterial type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol. Microbiol. 99, 1099–1118 (2016).

    CAS  Google Scholar 

  32. 32.

    Yap, M. L., Mio, K., Leiman, P. G., Kanamaru, S. & Arisaka, F. The baseplate wedges of bacteriophage T4 spontaneously assemble into hubless baseplate-like structure in vitro. J. Mol. Biol. 395, 349–360 (2010).

    CAS  PubMed  Google Scholar 

  33. 33.

    Leiman, P. G. et al. Morphogenesis of the T4 tail and tail fibers. Virol. J. 7, 355 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Bingle, L. E., Bailey, C. M. & Pallen, M. J. Type VI secretion: a beginner’s guide. Curr. Opin. Microbiol. 11, 3–8 (2008).

    CAS  PubMed  Google Scholar 

  35. 35.

    Nazarov, S. et al. Cryo-EM reconstruction of type VI secretion system baseplate and sheath distal end. EMBO J. 37, e97103 (2018).

    Google Scholar 

  36. 36.

    Taylor, N. M. I. et al. Structure of the T4 baseplate and its function in triggering sheath contraction. Nature 533, 346–352 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    English, G., Byron, O., Cianfanelli, F. R., Prescott, A. R. & Coulthurst, S. J. Biochemical analysis of TssK, a core component of the bacterial type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK–TssFG subcomplex. Biochem. J. 461, 291–304 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Logger, L., Aschtgen, M. S., Guérin, M., Cascales, E. & Durand, E. Molecular dissection of the interface between the type VI secretion TssM cytoplasmic domain and the TssG baseplate component. J. Mol. Biol. 428, 4424–4437 (2016).

    CAS  Google Scholar 

  39. 39.

    Zoued, A. et al. Structure–function analysis of the TssL cytoplasmic domain reveals a new interaction between the type VI secretion baseplate and membrane complexes. J. Mol. Biol. 428, 4413–4423 (2016).

    CAS  Google Scholar 

  40. 40.

    Yap, M. L. et al. Sequential assembly of the wedge of the baseplate of phage T4 in the presence and absence of gp11 as monitored by analytical ultracentrifugation. Macromol. Biosci. 10, 808–813 (2010).

    CAS  PubMed  Google Scholar 

  41. 41.

    Arisaka, F., Yap, M. L., Kanamaru, S. & Rossmann, M. G. Molecular assembly and structure of the bacteriophage T4 tail. Biophys. Rev. 8, 385–396 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Wang, S., Sun, S., Li, Z., Zhang, R. & Xu, J. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput. Biol. 13, e1005324 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Onoue, Y. et al. Construction of functional fragments of the cytoplasmic loop with the C-terminal region of PomA, a stator component of the Vibrio Na+ driven flagellar motor. J. Biochem. 155, 207–216 (2014).

    CAS  PubMed  Google Scholar 

  44. 44.

    Rowe, H. M. et al. Modification of the CpsA protein reveals a role in alteration of the Streptococcus agalactiae cell envelope. Infect. Immun. 83, 1497–1506 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Hopf, T. A. et al. Sequence co-evolution gives 3D contacts and structures of protein complexes. eLife 3, e03430 (2014).

    PubMed Central  Google Scholar 

  46. 46.

    Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Chang, Y., Rettberg, L. A., Ortega, D. R. & Jensen, G. J. In vivo structures of an intact type VI secretion system revealed by electron cryotomography. EMBO Rep. 18, 1090–1099 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Douzi, B. et al. Structure–function analysis of the C-Terminal domain of the type VI secretion TssB tail sheath subunit. J. Mol. Biol. 430, 297–309 (2018).

    CAS  PubMed  Google Scholar 

  49. 49.

    Kostyuchenko, V. A. et al. Three-dimensional structure of bacteriophage T4 baseplate. Nat. Struct. Biol. 10, 688–693 (2003).

    CAS  PubMed  Google Scholar 

  50. 50.

    Kostyuchenko, V. A. et al. The tail structure of bacteriophage T4 and its mechanism of contraction. Nat. Struct. Mol. Biol. 12, 810–813 (2005).

    CAS  PubMed  Google Scholar 

  51. 51.

    Leiman, P. G., Chipman, P. R., Kostyuchenko, V. A., Mesyanzhinov, V. V. & Rossmann, M. G. Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 118, 419–429 (2004).

    CAS  PubMed  Google Scholar 

  52. 52.

    Zaslaver, A. et al. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat. Methods 3, 623–628 (2006).

    CAS  Google Scholar 

  53. 53.

    Brunet, Y. R., Bernard, C. S., Gavioli, M., Lloubès, R. & Cascales, E. An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster. PLoS Genet. 7, e1002205 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    CAS  Google Scholar 

  55. 55.

    Aschtgen, M.-S., Bernard, C. S., De Bentzmann, S., Lloubes, R. & Cascales, E. SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J. Bacteriol. 190, 7523–7531 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Chaveroche, M. K., Ghigo, J. M. & d’Enfert, C. A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res. 28, E97 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Van Den Ent, F. & Löwe, J. RF cloning: a restriction-free method for inserting target genes into plasmids. J. Biochem. Biophys. Methods 67, 67–74 (2006).

    Article  Google Scholar 

  58. 58.

    Gueguen, E. & Cascales, E. Promoter swapping unveils the role of the Citrobacter rodentium CTS1 type VI secretion system in interbacterial competition. Appl. Environ. Microbiol. 79, 32–38 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Brunet, Y. R., Espinosa, L., Harchouni, S., Mignot, T. & Cascales, E. Imaging type VI secretion-mediated bacterial killing. Cell Rep. 3, 36–41 (2013).

    CAS  Google Scholar 

  60. 60.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS  Google Scholar 

  64. 64.

    Asarnow, D. pyem (GitHub, 2016);

  65. 65.

    Sanchez, R. M. Recentering and Subboxing of Particles (REP) (GitHub, 2017);

  66. 66.

    Terwilliger, T. C., Sobolev, O., Afonine, P. V. & Adams, P. D. Automated map sharpening by maximization of detail and connectivity. Acta Crystallogr. Sect. D Struct. Biol. 74, 545–559 (2018).

    CAS  Google Scholar 

  67. 67.

    Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  Google Scholar 

  68. 68.

    Simkovic, F., Ovchinnikov, S., Baker, D. & Rigden, D. J. Applications of contact predictions to structural biology. IUCrJ 4, 291–300 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Marks, D. S. et al. Protein 3D structure computed from evolutionary sequence variation. PLoS ONE 6, e28766 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  Google Scholar 

  71. 71.

    Leaver-Fay, A. et al. Rosetta3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. Sect. D Struct. Biol. 74, 531–544 (2018).

    CAS  Google Scholar 

  73. 73.

    McGuffin, L. J., Bryson, K. & Jones, D. T. The PSIPRED protein structure prediction server. Bioinformatics 16, 404–405 (2000).

    CAS  Google Scholar 

  74. 74.

    Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Clarke, O. B. Coot Trimmings (GitHub, 2017);

  76. 76.

    Bouvier, G., Bardiaux, B. & Nilges, M. Automatic building of protein atomic models from cryo-EM maps. Biophys. J. 114, 190a–191a (2018).

    Google Scholar 

  77. 77.

    Ovchinnikov, S. et al. Protein structure determination using metagenome sequence data. Science 355, 294–298 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Rieping, W., Bardiaux, B., Bernard, A., Malliavin, T. E. & Nilges, M. ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23, 381–382 (2007).

    CAS  PubMed  Google Scholar 

  79. 79.

    Wang, S., Peng, J., Ma, J. & Xu, J. Protein secondary structure prediction using deep convolutional neural fields. Sci. Rep. 6, 18962 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Brunger, A. T. Version 1.2 of the crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007).

    CAS  PubMed  Google Scholar 

  81. 81.

    Mareuil, F., Malliavin, T. E., Nilges, M. & Bardiaux, B. Improved reliability, accuracy and quality in automated NMR structure calculation with ARIA. J. Biomol. NMR 62, 425–438 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Kuszewski, J., Gronenborn, A. M. & Clore, G. M. Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases. Protein Sci. 5, 1067–1080 (2008).

    Google Scholar 

  83. 83.

    Wang, R. Y. R. et al. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. eLife 5, e17219 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Barad, B. A. et al. EMRinger: side chain–directed model and map validation for 3D cryo-electron microscopy. Nat. Methods 12, 943–946 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS  Google Scholar 

  86. 86.

    Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. Sect. D Biol. Crystallogr. 71, 136–153 (2015).

    CAS  Google Scholar 

  87. 87.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  Google Scholar 

  88. 88.

    Williams, C. Using C-Alpha Geometry to Describe Protein Secondary Structure and Motif PhD thesis, Duke Univ. (2016).

Download references


We thank members of the E.C. and R.F. research groups, and J. Sturgis for helpful discussions and support, M. Weigt and C. Feinauer for useful discussion on evolutionary covariance, T. Huynh and G. Canet for assistance with the computer clusters at the Institut Pasteur and Institut Européen de Chimie et Biologie (IECB), respectively, A. Kosta (Plateforme de microscopie, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France) for providing access to the IMM EM facility and for checking the quality of samples by negative stain EM, A. Bezault for support at the cryo-EM facility at IECB and T. Doan and L. Espinosa for their helpful support with the fluorescence microscopy device and analysis. We thank M. Nilges (Institut Pasteur) for access to the computer cluster of the ERC project 'BayCellS'. This work was supported by the CNRS, the Aix-Marseille Université, the Institut Pasteur and the INSERM, and by grants from the Agence Nationale de la Recherche (grants no. ANR-14-CE14-0006 and ANR-17-CE11-0039 to E.C., and no. ANR-11-EQPX-008 to J.C.R.). Work of Y.C. was supported by an 'Ecole Doctorale' PhD fellowship from the 'Fondation pour la Recherche Médicale' (grant no. FRM-ECO20160736014). R.F. and C.R. were supported by IDEX Bordeaux through a 'chaire d’excellence' to R.F. We acknowledge the European Synchrotron Radiation Facility for provision of beamtime on CM01 and thank G. Effantin and E. Kandiah for assistance. F.A. thanks the French Institute of Bioinformatics (IFB; grant no. ANR-11-INBS-0013) for financial support.

Author information




E.D., R.F. and E.C. designed the research, assembled results and wrote the paper with input from all authors. E.D. and Y.C. performed the biochemical experiments and the initial negative stain EM observations. C.R. performed the sample preparation for cryo-EM, de novo reconstruction and structure refinement. C.R. and R.F. analysed the cryo-EM data and the final structure. C.M. and M.R. performed the mass spectrometry experiments. Y.C. performed all in vivo experiments. R.P. and G.B. carried out the method development and structural modelling. B.B. and F.A. carried out the structural modelling. J.C.R. performed the design and analysis of the mass spectrometry experiments.

Corresponding authors

Correspondence to Rémi Fronzes or Eric Durand.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Results, Supplementary Tables 13, Supplementary References, Supplementary Figures 1–19.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cherrak, Y., Rapisarda, C., Pellarin, R. et al. Biogenesis and structure of a type VI secretion baseplate. Nat Microbiol 3, 1404–1416 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing