Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nε-fatty acylation of multiple membrane-associated proteins by Shigella IcsB effector to modulate host function

Abstract

Shigella flexneri, an intracellular Gram-negative bacterium causative for shigellosis, employs a type III secretion system to deliver virulence effectors into host cells. One such effector, IcsB, is critical for S. flexneri intracellular survival and pathogenesis, but its mechanism of action is unknown. Here, we discover that IcsB is an 18-carbon fatty acyltransferase catalysing lysine Nε-fatty acylation. IcsB disrupted the actin cytoskeleton in eukaryotes, resulting from Nε-fatty acylation of RhoGTPases on lysine residues in their polybasic region. Chemical proteomic profiling identified about 60 additional targets modified by IcsB during infection, which were validated by biochemical assays. Most IcsB targets are membrane-associated proteins bearing a lysine-rich polybasic region, including members of the Ras, Rho and Rab families of small GTPases. IcsB also modifies SNARE proteins and other non-GTPase substrates, suggesting an extensive interplay between S. flexneri and host membrane trafficking. IcsB is localized on the Shigella-containing vacuole to fatty-acylate its targets. Knockout of CHMP5—one of the IcsB targets and a component of the ESCRT-III complex—specifically affected S. flexneri escape from host autophagy. The unique Nε-fatty acyltransferase activity of IcsB and its altering of the fatty acylation landscape of host membrane proteomes represent an unprecedented mechanism in bacterial pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ectopic expression of IcsB is toxic to yeast and disrupts the actin cytoskeleton in mammalian cells, which requires the putative catalytic motif.
Fig. 2: IcsB disrupts RhoGTPase membrane cycling by modifying its C-terminal tail.
Fig. 3: IcsB is an 18-carbon N-fatty acyltransferase that modifies lysine residues in the C-terminal PBR of RhoGTPases.
Fig. 4: Chemical proteomics reveals that IcsB targets multiple host membrane proteins for lysine Nε-fatty acylation.
Fig. 5: IcsB is localized on Shigella-containing vacuoles and modifies its substrates on the membrane location.
Fig. 6: Fatty acylation of CHMP5 by IcsB is important for Shigella escape from host autophagy.

Similar content being viewed by others

References

  1. Cui, J. & Shao, F. Biochemistry and cell signaling taught by bacterial effectors. Trends Biochem. Sci. 36, 532–540 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Carayol, N. & Tran Van Nhieu, G. The inside story of Shigella invasion of intestinal epithelial cells. Cold Spring Harb. Perspect. Med. 3, a016717 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ashida, H., Mimuro, H. & Sasakawa, C. Shigella manipulates host immune responses by delivering effector proteins with specific roles. Front Immunol. 6, 219 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mellouk, N. & Enninga, J. Cytosolic access of intracellular bacterial pathogens: the Shigella paradigm. Front. Cell. Infect. Microbiol. 6, 35 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Li, H. et al. The phosphothreonine lyase activity of a bacterial type III effector family. Science 315, 1000–1003 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, Y. et al. Structural insights into the enzymatic mechanism of the pathogenic MAPK phosphothreonine lyase. Mol. Cell 28, 899–913 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Mazurkiewicz, P. et al. SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Mol. Microbiol. 67, 1371–1383 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goto, Y. et al. Discovery of unique lanthionine synthetases reveals new mechanistic and evolutionary insights. PLoS Biol. 8, e1000339 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Allaoui, A., Mounier, J., Prevost, M. C., Sansonetti, P. J. & Parsot, C. icsB: a Shigella flexneri virulence gene necessary for the lysis of protrusions during intercellular spread. Mol. Microbiol. 6, 1605–1616 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Ogawa, M., Suzuki, T., Tatsuno, I., Abe, H. & Sasakawa, C. IcsB, secreted via the type III secretion system, is chaperoned by IpgA and required at the post-invasion stage of Shigella pathogenicity. Mol. Microbiol. 48, 913–931 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Ogawa, M. et al. Escape of intracellular Shigella from autophagy. Science 307, 727–731 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kayath, C. A. et al. Escape of intracellular Shigella from autophagy requires binding to cholesterol through the type III effector, IcsB. Microbes Infect. 12, 956–966 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Baxt, L. A. & Goldberg, M. B. Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection. PLoS ONE 9, e94653 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Mostowy, S. et al. Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 8, 433–444 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Campbell-Valois, F. X., Sachse, M., Sansonetti, P. J. & Parsot, C. Escape of actively secreting Shigella flexneri from ATG8/LC3-positive vacuoles formed during cell-to-cell spread is facilitated by IcsB and VirA. mBio 6, e02567-14 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Pei, J. & Grishin, N. V. The Rho GTPase inactivation domain in Vibrio cholerae MARTX toxin has a circularly permuted papain-like thiol protease fold. Proteins 77, 413–419 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahrens, S., Geissler, B. & Satchell, K. J. Identification of a His–Asp–Cys catalytic triad essential for function of the Rho inactivation domain (RID) of Vibrio cholerae MARTX toxin. J. Biol. Chem. 288, 1397–1408 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Shao, F., Merritt, P. M., Bao, Z., Innes, R. W. & Dixon, J. E. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109, 575–588 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Sheahan, K. L. & Satchell, K. J. Inactivation of small Rho GTPases by the multifunctional RTX toxin from Vibrio cholerae. Cell. Microbiol. 9, 1324–1335 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lemichez, E. & Aktories, K. Hijacking of Rho GTPases during bacterial infection. Exp. Cell Res. 319, 2329–2336 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Shao, F. et al. Biochemical characterization of the Yersinia YopT protease: cleavage site and recognition elements in Rho GTPases. Proc. Natl Acad. Sci. USA 100, 904–909 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoffman, G. R., Nassar, N. & Cerione, R. A. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100, 345–356 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312, 1211–1214 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Lupardus, P. J., Shen, A., Bogyo, M. & Garcia, K. C. Small molecule-induced allosteric activation of the Vibrio cholerae RTX cysteine protease domain. Science 322, 265–268 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Prochazkova, K. & Satchell, K. J. Structure–function analysis of inositol hexakisphosphate-induced autoprocessing of the Vibrio cholerae multifunctional autoprocessing RTX toxin. J. Biol. Chem. 283, 23656–23664 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Calder, T. et al. Vibrio type III effector VPA1380 is related to the cysteine protease domain of large bacterial toxins. PLoS ONE 9, e104387 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mittal, R., Peak-Chew, S. Y., Sade, R. S., Vallis, Y. & McMahon, H. T. The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate. J. Biol. Chem. 285, 19927–19934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hang, H. C. & Linder, M. E. Exploring protein lipidation with chemical biology. Chem. Rev. 111, 6341–6358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grammel, M. & Hang, H. C. Identification of lysine acetyltransferase substrates using bioorthogonal chemical proteomics. Methods Mol. Biol. 981, 201–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Charron, G. et al. Robust fluorescent detection of protein fatty-acylation with chemical reporters. J. Am. Chem. Soc. 131, 4967–4975 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Wilson, J. P., Raghavan, A. S., Yang, Y. Y., Charron, G. & Hang, H. C. Proteomic analysis of fatty-acylated proteins in mammalian cells with chemical reporters reveals S-acylation of histone H3 variants. Mol. Cell Proteom. 10, M110.001198 (2011).

    Article  CAS  Google Scholar 

  32. Dong, N. et al. Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses. Cell 150, 1029–1041 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, P. et al. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature 551, 378–383 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Shim, J. H. et al. CHMP5 is essential for late endosome function and down-regulation of receptor signaling during mouse embryogenesis. J. Cell Biol. 172, 1045–1056 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ward, D. M. et al. The role of LIP5 and CHMP5 in multivesicular body formation and HIV-1 budding in mammalian cells. J. Biol. Chem. 280, 10548–10555 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Shibutani, S. T., Saitoh, T., Nowag, H., Munz, C. & Yoshimori, T. Autophagy and autophagy-related proteins in the immune system. Nat. Immunol. 16, 1014–1024 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Choy, A. et al. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338, 1072–1076 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Resh, M. D. Fatty acylation of proteins: the long and the short of it. Prog. Lipid Res. 63, 120–131 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hannoush, R. N. Synthetic protein lipidation. Curr. Opin. Chem. Biol. 28, 39–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Nadolski, M. J. & Linder, M. E. Protein lipidation. FEBS J. 274, 5202–5210 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Schey, K. L., Gutierrez, D. B., Wang, Z., Wei, J. & Grey, A. C. Novel fatty acid acylation of lens integral membrane protein aquaporin-0. Biochemistry 49, 9858–9865 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Stevenson, F. T., Bursten, S. L., Fanton, C., Locksley, R. M. & Lovett, D. H. The 31-kDa precursor of interleukin 1 alpha is myristoylated on specific lysines within the 16-kDa N-terminal propiece. Proc. Natl Acad. Sci. USA 90, 7245–7249 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jiang, H. et al. SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496, 110–113 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, X., Spiegelman, N. A., Nelson, O. D., Jing, H. & Lin, H. SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. eLife 6, e25158 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhou, Y. et al. N ε-fatty acylation of Rho GTPases by a MARTX toxin effector. Science 358, 528–531 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Dolores, J. S., Agarwal, S., Egerer, M. & Satchell, K. J. Vibrio cholerae MARTX toxin heterologous translocation of beta-lactamase and roles of individual effector domains on cytoskeleton dynamics. Mol. Microbiol. 95, 590–604 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fres, J. M., Muller, S. & Praefcke, G. J. Purification of the CaaX-modified, dynamin-related large GTPase hGBP1 by coexpression with farnesyltransferase. J. Lipid Res. 51, 2454–2459 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dong, N. et al. Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector. Nat. Microbiol. 2, 16236 (2016).

    Article  PubMed  CAS  Google Scholar 

  50. Pellegrin, S. & Mellor, H. Rho GTPase activation assays. Curr. Protoc. Cell Biol. 38, 14.8.1–14.8.19 (2008).

    Article  Google Scholar 

  51. Hu, M., Liu, Y., Yu, K. & Liu, X. Decreasing the amount of trypsin in in-gel digestion leads to diminished chemical noise and improved protein identifications. J. Proteom. 109, 16–25 (2014).

    Article  CAS  Google Scholar 

  52. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Isberg for providing Yersinia strains, G. Praefcke for the pRSF-FTase plasmid, and the Proteomics Resource Center at The Rockefeller University for mass spectrometry analysis. We also thank members of the Shao laboratory for technical assistance and stimulating discussions. This work was supported by the Basic Science Center Project of the National Natural Science Foundation of China (81788101), National Key Research and Development Program of China (2017YFA0505900 and 2016YFA0501500) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDB08020202) to F.S. H.C.H. acknowledges support from NIH-NIGMS grant R01 GM087544. The research was also supported in part by an International Early Career Scientist grant from the Howard Hughes Medical Institute and Beijing Scholar Program to F.S.

Author information

Authors and Affiliations

Authors

Contributions

F.S. conceived the study. Y.Z. performed initial studies on the identification of RhoGTPases as the substrate of IcsB and its fatty acyltransferase activity. W.L. established the SunTag labelling of T3SS effectors, analysed the proteomic hits of IcsB, and performed the localization and autophagy studies. P.Z. and Z.L. provided technical assistance to Y.Z. and W.L. H.Z. and Y.X. performed the plaque assay. T.P. and H.C.H. were responsible for the chemical proteomic analyses. X.D. and S.C. carried out the mass spectrometry experiments. Y.Z., W.L., T.P., S.C., H.C.H. and F.S. analysed the data. W.L., Y.Z. and F.S. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Howard C. Hang or Feng Shao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7.

Reporting Summary

Supplementary Table 1

SILAC chemical proteomic analyses IcsB-modified proteins in IcsB-transfected cells.

Supplementary Table 2

SILAC chemical proteomic analyses IcsB-modified proteins in Shigella-infected cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhou, Y., Peng, T. et al. Nε-fatty acylation of multiple membrane-associated proteins by Shigella IcsB effector to modulate host function. Nat Microbiol 3, 996–1009 (2018). https://doi.org/10.1038/s41564-018-0215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0215-6

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology