Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone–co-chaperone complex

Abstract

The type VI secretion system (T6SS) is used by many Gram-negative bacteria as a molecular weapon to modulate neighbouring bacterial and eukaryotic cells, thereby affecting the dynamics of community structure in multiple species environments. The T6SS injects its inner-needle Hcp tube, the sharpening tip complex consisting of VgrG and PAAR, and toxic effectors into neighbouring cells. Its functions are largely determined by the activities of its delivered effectors. Six mechanisms of effector delivery have been described: two mediated by the inner tube and the others mediated by the VgrG and PAAR tip complex. Here, we report an additional effector delivery mechanism that relies on interaction with a chaperone complex and a PAAR protein as a carrier. The Pseudomonasaeruginosa PAO1 TOX-REase-5 domain-containing effector TseT directly interacts with PAAR4 and the chaperone TecT for delivery, and an immunity protein, TsiT, for protection from its toxicity. TecT forms a complex with its co-chaperone, co-TecT, which is disrupted by the carboxy-terminal tail of PAAR4. In addition, we delineate a complex, multilayered competitive process that dictates effector trafficking. PAAR delivery provides an additional tool for engineering cargo protein translocation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TOX-REase-5 effector secreted by H2-T6SS.
Fig. 2: Interactions between PAAR4, the chaperones TecT and co-TecT and the effector TseT.
Fig. 3: PAAR4 interacts with the chaperone TecT and the effector TseT through a C-terminal extension.
Fig. 4: VgrG requirement for TseT-mediated killing.
Fig. 5: Toxicity of TseT in E.coli.
Fig. 6: Model outlining the possible competing interactions that occur prior to the delivery of TseT.

Similar content being viewed by others

References

  1. Gellatly, S. L. & Hancock, R. E. W. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog. Dis. 67, 159–173 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Bleves, S. et al. Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons. Int. J. Med. Microbiol. 300, 534–543 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Pukatzki, S. et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc. Natl Acad. Sci. USA 103, 1528–1533 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mougous, J. D. et al. A virulence locus of Pseudomonas secretion apparatus. Science 312, 1526–1530 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Basler, M. Type VI secretion system: secretion by a contractile nanomachine. Phil. Trans. R. Soc. B 370, 20150021 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Leiman, P. G. et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl Acad. Sci. USA 106, 4154–4159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Basler, M., Ho, B. T. & Mekalanos, J. J. Tit-for-tat: type VI secretion system counterattack during bacterial cell–cell interactions. Cell 152, 884–894 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sana, T. G., Berni, B. & Bleves, S. The T6SSs of Pseudomonas aeruginosa strain PAO1 and their effectors: beyond bacterial-cell targeting. Front. Cell. Infect. Microbiol. 6, 61 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lin, J. et al. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat. Commun. 8, 14888 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sana, T. G. et al. The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and fur and modulates internalization in epithelial cells. J. Biol. Chem. 287, 27095–27105 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sana, T. G., Sana, C., Tonglet, C. M., Garvis, S. & Bleves, S. Divergent control of two type VI secretion systems by RpoN in Pseudomonas aeruginosa. PLoS ONE 8, e76030 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moscoso, J. A., Mikkelsen, H., Heeb, S., Williams, P. & Filloux, A. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ. Microbiol. 13, 3128–3138 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Allsopp, L. P. et al. RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 114, 7707–7712 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shneider, M. M. et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500, 350–353 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hood, R. D. et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7, 25–37 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong, T. G., Ho, B. T., Yoder-Himes, D. R. & Mekalanos, J. J. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc. Natl Acad. Sci. USA 110, 2623–2628 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma, J., Sun, M., Dong, W., Pan, Z. & Lu, C. PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ. Microbiol. 19, 345–360 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Rigard, M. et al. Francisella tularensis IglG belongs to a novel family of PAAR-like T6SS proteins and harbors a unique N-terminal extension required for virulence. PLoS Pathog. 12, e1005821 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Whitney, J. C. et al. An interbacterial NAD(P)+ glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell 163, 607–619 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma, J. et al. The Hcp proteins fused with diverse extended-toxin domains represent a novel pattern of antibacterial effectors in type VI secretion systems. Virulence 8, 1189–1202 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pukatzki, S., Ma, A. T., Revel, A. T., Sturtevant, D. & Mekalanos, J. J. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc. Natl Acad. Sci. USA 104, 15508–15513 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sana, T. G. et al. Internalization of Pseudomonas aeruginosa strain PAO1 into epithelial cells is promoted by interaction of a T6SS effector with the microtubule network. mBio 6, e00712-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hachani, A., Allsopp, L. P., Oduko, Y. & Filloux, A. The VgrG proteins are “a la carte” delivery systems for bacterial type VI effector. J. Biol. Chem. 289, 17872–17884 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Silverman, J. M. et al. Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Cell 51, 584–593 (2013).

    CAS  Google Scholar 

  25. Ho, B. T., Dong, T. G. & Mekalanos, J. J. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15, 9–21 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Liang, X. et al. Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc. Natl Acad. Sci. USA 112, 9106–9111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Unterweger, D. et al. Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae. EMBO J. 34, 2198–2210 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bondage, D. D., Lin, J.-S., Ma, L.-S., Kuo, C.-H. & Lai, E.-M. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor–effector complex. Proc. Natl Acad. Sci. USA 113, E3931–E3940 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Diniz, J. A. & Coulthurst, S. J. Intraspecies competition in Serratia marcescens is mediated by type VI-secreted Rhs effectors and a conserved effector-associated accessory protein. J. Bacteriol. 197, 2350–2360 (2015).

    Article  CAS  Google Scholar 

  30. Cianfanelli, F. R. et al. VgrG and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathog. 12, e1005735 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Deng, W. et al. Assembly, structure, function and regulation of type III secretion systems. Nat. Rev. Microbiol. 15, 323–337 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Zechner, E. L., Lang, S. & Schildbach, J. F. Assembly and mechanisms of bacterial type IV secretion machines. Phil. Trans. R. Soc. B 367, 1073–1087 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, D., de Souza, R. F., Anantharaman, V., Iyer, L. M. & Aravind, L. Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol. Direct 7, 18 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barret, M., Egan, F., Fargier, E., Morrissey, J. P. & Gara, F. O. Genomic analysis of the type VI secretion systems in Pseudomonas spp.: novel clusters and putative effectors uncovered. Microbiology 157, 1726–1739 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Whitney, J. C. et al. Genetically distinct pathways guide effector export through the type VI secretion system. Mol. Microbiol. 92, 529–542 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wong, M. J. Q. et al. Microbial herd protection mediated by antagonistic interaction in polymicrobial communities. Appl. Environ. Microbiol. 82, 6881–6888 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  37. Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McGinness, K. E., Baker, T. A. & Sauer, R. T. Engineering controllable protein degradation. Mol. Cell 22, 701–707 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Canadian Institutes of Health Research project grant, a Natural Sciences and Engineering Research Council (NSERC) Discovery grant and an Alberta Livestock and Meat Agency (ALMA) grant to T.G.D. T.G.D. is supported by a Canada Research Chair award. B.J.B. is supported by Alberta Innovates Health Solutions (AIHS) and NSERC postdoctoral fellowships. A.N.H.L. and L.L. were supported by the Markin Undergraduate Student Research Program in Health and Wellness. We thank other members of the Dong lab for providing reagents, general support and critical reading of the manuscript. We thank L. Brechenmacher and the Southern Alberta Mass Spectrometry Centre for the LC–MS/MS analysis.

Author information

Authors and Affiliations

Authors

Contributions

T.G.D. conceived the project. B.J.B., X.L. and T.G.D. designed the experiments. B.J.B., X.L., M.W., A.N.H.L. and L.L. performed the experiments. B.J.B. and T.G.D. prepared the manuscript.

Corresponding author

Correspondence to Tao G. Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10, Supplementary Tables 1–3.

Reporting Summary

Supplementary Video 1

Visualization of H2-T6SS sheath assembly. Strain PAO1 retS tssB2-sfGFP was imaged over 5 minutes with a rate of 1 image per 10 seconds. The movie is played at a rate of 10 frames per second. Cells were grown to an OD600 of 2.0 in tryptic soy broth and spotted on a 0.5 × PBS agarose pad prior to imaging.

Supplementary Video 2

Deletion of vgrG2b does not affect assembly of the H2-T6SS sheath (as visualized with TssB2-sfGFP). Strain PAO1 retS tssB2-sfGFP vgrG2b was imaged over 5 minutes with a rate of 1 image per 10 seconds. The movie is played at a rate of 10 frames per second. Cells were grown to an OD600 of 2.0 in tryptic soy broth and spotted on a 0.5 × PBS agarose pad prior to imaging.

Supplementary Video 3

Deletion of vgrG4b does not affect assembly of the H2-T6SS sheath (as visualized with TssB2-sfGFP). Strain PAO1 retS tssB2-sfGFP vgrG4b was imaged over 5 minutes with a rate of 1 image per 10 seconds. The movie is played at a rate of 10 frames per second. Cells were grown to an OD600 of 2.0 in tryptic soy broth and spotted on a 0.5 × PBS agarose pad prior to imaging.

Supplementary Video 4

Deletion of vgrG6 does not affect assembly of the H2-T6SS sheath (as visualized with TssB2-sfGFP). Strain PAO1 retS tssB2-sfGFP vgrG4b was imaged over 5 minutes with a rate of 1 image per 10 seconds. The movie is played at a rate of 10 frames per second. Cells were grown to an OD600 of 2.0 in tryptic soy broth and spotted on a 0.5 × PBS agarose pad prior to imaging.

Supplementary Table 4

Samples report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkinshaw, B.J., Liang, X., Wong, M. et al. A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone–co-chaperone complex. Nat Microbiol 3, 632–640 (2018). https://doi.org/10.1038/s41564-018-0144-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0144-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing