Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut


Metabolism of dietary glycans is pivotal in shaping the human gut microbiota. However, the mechanisms that promote competition for glycans among gut commensals remain unclear. Roseburiaintestinalis, an abundant butyrate-producing Firmicute, is a key degrader of the major dietary fibre xylan. Despite the association of this taxon to a healthy microbiota, insight is lacking into its glycan utilization machinery. Here, we investigate the apparatus that confers R.intestinalis growth on different xylans. R.intestinalis displays a large cell-attached modular xylanase that promotes multivalent and dynamic association to xylan via four xylan-binding modules. This xylanase operates in concert with an ATP-binding cassette transporter to mediate breakdown and selective internalization of xylan fragments. The transport protein of R.intestinalis prefers oligomers of 4–5 xylosyl units, whereas the counterpart from a model xylan-degrading Bacteroides commensal targets larger ligands. Although R.intestinalis and the Bacteroides competitor co-grew in a mixed culture on xylan, R.intestinalis dominated on the preferred transport substrate xylotetraose. These findings highlight the differentiation of capture and transport preferences as a possible strategy to facilitate co-growth on abundant dietary fibres and may offer a unique route to manipulate the microbiota based on glycan transport preferences in therapeutic interventions to boost distinct taxa.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Growth of R.intestinalis and induction of extracellular activity.
Fig. 2: The core xylan utilization apparatus of R.intestinalis.
Fig. 3: A low-affinity xylan-binding module mediates extended xylan binding to the xylanase RiXyn10A.
Fig. 4: Intracellular xylo-oligosaccharide depolymerization.
Fig. 5: Model for xylan utilization by R.intestinalis and competition assay with B.ovatus.


  1. 1.

    Nicholson, J. K. et al. Host–gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Sonnenburg, J. L. & Bäckhed, F. Diet–microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Marchesi, J. R. et al. The gut microbiota and host health: a new clinical frontier. Gut 65, 330–339 (2016).

    Article  PubMed  Google Scholar 

  4. 4.

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Cockburn, D. W. & Koropatkin, N. M. Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J. Mol. Biol. 428, 3230–3252 (2016).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Xu, S. et al. Butyrate induces apoptosis by activating PDC and inhibiting complex I through SIRT3 inactivation. Signal Transduct. Target. Ther. 2, e16035 (2017).

    Article  Google Scholar 

  8. 8.

    Donohoe, D. R. et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 48, 612–626 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Takahashi, K. et al. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion 93, 59–65 (2016).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916 (2012).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Duncan, S. H., Hold, G. L., Barcenilla, A., Stewart, C. S. & Flint, H. J. Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int. J. Syst. Evol. Microbiol. 52, 1615–1620 (2002).

    CAS  PubMed  Google Scholar 

  15. 15.

    Louis, P. & Flint, H. J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 294, 1–8 (2009).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Van den Abbeele, P. et al. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J. 7, 949–961 (2013).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    El Kaoutari, A., Armougom, F., Gordon, J. I., Raoult, D. & Henrissat, B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 11, 497–504 (2013).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Mirande, C. et al. Dietary fibre degradation and fermentation by two xylanolytic bacteria Bacteroides xylanisolvens XB1AT and Roseburia intestinalis XB6B4 from the human intestine. J. Appl. Microbiol. 109, 451–460 (2010).

    CAS  PubMed  Google Scholar 

  19. 19.

    Chassard, C., Goumy, V., Leclerc, M., Del’homme, C. & Bernalier-Donadille, A. Characterization of the xylan-degrading microbial community from human faeces. FEMS Microbiol. Ecol. 61, 121–131 (2007).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Sheridan, P. O. et al Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes. Microb. Genomics 2, e000043 (2016).

    Article  Google Scholar 

  21. 21.

    Selvendran, R. R. Chemistry of plant cell walls and dietary fibre. Scand. J. Gastroenterol. 5521, 33–41 (1987).

    Article  Google Scholar 

  22. 22.

    Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat. Commun. 6, 7481 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Zhang, M. et al. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes. Proc. Natl Acad. Sci. USA 111, E3708–E3717 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Kelly, G. et al. Structure of the cell-adhesion fragment of intimin from enteropathogenic Escherichia coli. Nat. Struct. Mol. Biol. 6, 313–318 (1999).

    CAS  Article  Google Scholar 

  26. 26.

    Ebbes, M. et al. Fold and function of the InlB B-repeat. J. Biol. Chem. 286, 15496–15506 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Karlsson, E. N. et al. The modular xylanase Xyn10A from Rhodothermus marinus is cell-attached, and its C-terminal domain has several putative homologues among cell-attached proteins within the phylum Bacteroidetes. FEMS Microbiol. Lett. 241, 233–242 (2004).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Ejby, M. et al. An ATP binding cassette transporter mediates the uptake of α-(1,6)-linked dietary oligosaccharides in Bifidobacterium and correlates with competitive growth on these substrates. J. Biol. Chem. 291, 20220–20231 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Ejby, M. et al. Structural basis for arabinoxylo-oligosaccharide capture by the probiotic Bifidobacterium animalis subsp. lactis Bl-04. Mol. Microbiol. 90, 1100–1112 (2013).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Honda, Y. & Kitaoka, M. A family 8 glycoside hydrolase from Bacillus halodurans C-125 (BH2105) is a reducing end xylose-releasing exo-oligoxylanase. J. Biol. Chem. 279, 55097–55103 (2004).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Sun, Z. et al. A novel three-component system-based regulatory model for D-xylose sensing and transport in Clostridium beijerinckii. Mol. Microbiol. 95, 576–589 (2015).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Duncan, S. H. et al. Wheat bran promotes enrichment within the human colonic microbiota of butyrate-producing bacteria that release ferulic acid. Environ. Microbiol. 18, 2214–2225 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Morrill, J. et al. The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes. BMC Biochem. 16, 26 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Cockburn, D. W. et al. Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol. Microbiol. 95, 209–230 (2015).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Ze, X. et al. Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic firmicutes bacterium Ruminococcus bromii. mBio 6, e01058-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    De Paepe, K., Kerckhof, F.-M., Verspreet, J., Courtin, C. M. & Van de Wiele, T. Inter-individual differences determine the outcome of wheat bran colonization by the human gut microbiome. Environ. Microbiol. 19, 3251–3267 (2017).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Mahowald, M. A. et al. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc. Natl Acad. Sci. USA 106, 5859–5864 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Biely, P. et al. Mode of action of acetylxylan esterases on acetyl glucuronoxylan and acetylated oligosaccharides generated by a GH10 endoxylanase. Biochim. Biophys. Acta 1830, 5075–5086 (2013).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Sørbotten, A., Horn, S. J., Eijsink, V. G. H. & Vårum, K. M. Degradation of chitosans with chitinase B from Serratia marcescens. FEBS J. 272, 538–549 (2005).

    Article  PubMed  Google Scholar 

  40. 40.

    Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Dümmler, A., Lawrence, A.-M. & de Marco, A. Simplified screening for the detection of soluble fusion constructs expressed in E. coli using a modular set of vectors. Microb. Cell Fact. 4, 34 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959).

    CAS  Article  Google Scholar 

  47. 47.

    Roe, J. H. & Rice, E. W. A photometric method for the determination of free pentoses in animal tissue. J. Biol. Chem. 173, 507–512 (1948).

    CAS  PubMed  Google Scholar 

  48. 48.

    Deschatelets, L. & Yu, E. K. C. A simple pentose assay for biomass conversion studies. Appl. Microbiol. Biotechnol. 24, 379–385 (1986).

    CAS  Article  Google Scholar 

  49. 49.

    Dilokpimol, A. et al. Enzymatic synthesis of β-xylosyl-oligosaccharides by transxylosylation using two β-xylosidases of glycoside hydrolase family 3 from Aspergillus nidulans FGSC A4. Carbohydr. Res. 346, 421–429 (2011).

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Govind, V., Young, K. & Maudsley, A. A. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 13, 129–153 (2000).

    Article  Google Scholar 

  51. 51.

    Zhang, H., Neal, S. & Wishart, D. S. RefDB: a database of uniformly referenced protein chemical shifts. J. Biomol. NMR 25, 173–195 (2003).

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Takeo, K. Affinity electrophoresis: principles and applications. Electrophoresis 5, 187–195 (1984).

    CAS  Article  Google Scholar 

  53. 53.

    Scott, K. P., Martin, J. C., Duncan, S. H. & Flint, H. J. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol. Ecol. 87, 30–40 (2014).

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Anand, S., Kaur, H. & Mande, S. S. Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens. Front. Microbiol. 7, 1945 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references


We thank B. Henrissat, architecture et fonction des macromolécules biologiques, CNRS, Aix-Marseille University and the curator of CAZy, for his advice and discussions on the assignment of the novel CBMx and the esterase. We also thank M. Yadav, US Department of Agriculture, Agricultural Research Service, for the kind gift of cornbran xylan, and BioCHOS AS for providing the chitooligo (CHOS) sample. M. Due, T. Holm Madsen and C. Aaarup Christensen are thanked for their technical help in cloning recombinant proteins and the performance of binding experiments. We also wish to thank A. Schultz, H. Juel Martens and M. Hansen, PLEN, University of Copenhagen, for the use of the confocal laser scanning microscopy in the initial microscopy experiments. This project was funded by a Graduate School DTU Scholarship, Lyngby, Denmark. Additional fundings were from the Danish Research Council for Independent Research, Natural Sciences (DFF, FNU) by a Research Project 2 grant (grant ID: 4002-00297B), a BIONÆR project (grant number: 244259) and the Norwegian NMR Platform, NNP (F.L.A.) from the Research Council of Norway (226244). Carlsberg Foundation is acknowledged for an ITC instrument grant (2011-01-0598).

Author information




Growth analysis was performed by M.L.L. Transcriptomic analysis was done by M.L.L., C.W. and D.A.E. Enzyme characterization was performed by M.L.L., M.E., S.S.P., F.L.A. and B.W. qPCR was done by M.L.L. and M.I.B. Microscopy was perfromed by M.L.L. and C.S. Experiments were designed by M.L.L. and M.A.H. The manuscript written by M.L.L. and M.A.H. with contributions from T.R.L., B.W. and F.L.A. Figures were prepared by M.L.L.

Corresponding author

Correspondence to Maher Abou Hachem.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 2–14, Supplementary Figures 1– 9.

Life Sciences Reporting Summary

Supplementary Table 1

R. intestinalis L1–82 gene expression in response to xylose (X1) relative to glucose (Glc) obtained from RNA-seq analysis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leth, M.L., Ejby, M., Workman, C. et al. Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut. Nat Microbiol 3, 570–580 (2018). https://doi.org/10.1038/s41564-018-0132-8

Download citation

Further reading