Article

Activation of Vibrio cholerae quorum sensing promotes survival of an arthropod host

Received:
Accepted:
Published online:

Abstract

Vibrio cholerae colonizes the human terminal ileum to cause cholera, and the arthropod intestine and exoskeleton to persist in the aquatic environment. Attachment to these surfaces is regulated by the bacterial quorum-sensing signal transduction cascade, which allows bacteria to assess the density of microbial neighbours. Intestinal colonization with V. cholerae results in expenditure of host lipid stores in the model arthropod Drosophila melanogaster. Here we report that activation of quorum sensing in the Drosophila intestine retards this process by repressing V. cholerae succinate uptake. Increased host access to intestinal succinate mitigates infection-induced lipid wasting to extend survival of V. cholerae-infected flies. Therefore, quorum sensing promotes a more favourable interaction between V. cholerae and an arthropod host by reducing the nutritional burden of intestinal colonization.

  • Subscribe to Nature Microbiology for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Hawver, L. A., Giulietti, J. M., Baleja, J. D. & Ng, W. L. Quorum sensing coordinates cooperative expression of pyruvate metabolism genes to maintain a sustainable environment for population stability. mBio 7, e01863-16 (2016).

  2. 2.

    Studer, S. V., Mandel, M. J. & Ruby, E. G. AinS quorum sensing regulates the Vibrio fischeri acetate switch. J. Bacteriol. 190, 5915–5923 (2008).

  3. 3.

    Hassett, D. J. et al. Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol. Microbiol. 34, 1082–1093 (1999).

  4. 4.

    Vuong, C., Gerke, C., Somerville, G. A., Fischer, E. R. & Otto, M. Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J. Infect. Dis. 188, 706–718 (2003).

  5. 5.

    Hammer, B. K. & Bassler, B. L. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50, 101–104 (2003).

  6. 6.

    Ansaldi, M. & Dubnau, D. Diversifying selection at the Bacillus quorum-sensing locus and determinants of modification specificity during synthesis of the ComX pheromone. J. Bacteriol. 186, 15–21 (2004).

  7. 7.

    Cheng, Q., Campbell, E. A., Naughton, A. M., Johnson, S. & Masure, H. R. The com locus controls genetic transformation in Streptococcus pneumoniae. Mol. Microbiol. 23, 683–692 (1997).

  8. 8.

    Suckow, G., Seitz, P. & Blokesch, M. Quorum sensing contributes to natural transformation of Vibrio cholerae in a species-specific manner. J. Bacteriol. 193, 4914–4924 (2011).

  9. 9.

    Miyashiro, T. & Ruby, E. G. Shedding light on bioluminescence regulation in Vibrio fischeri. Mol. Microbiol. 84, 795–806 (2012).

  10. 10.

    Rutherford, S. T. & Bassler, B. L. Bacterial quorum sensing: its role in virulence and possibilities for its control. C. S. H. Perspect. Med. 2, a012427 (2012).

  11. 11.

    Zhu, J. & Mekalanos, J. J. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev. Cell 5, 647–656 (2003).

  12. 12.

    Lo Scrudato, M. & Blokesch, M. The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet. 8, e1002778 (2012).

  13. 13.

    Neale, G., Gompertz, D., Schonsby, H., Tabaqchali, S. & Booth, C. C. The metabolic and nutritional consequences of bacterial overgrowth in the small intestine. Am. J. Clin. Nutr. 25, 1409–1417 (1972).

  14. 14.

    Taylor, R. K., Miller, V. L., Furlong, D. B. & Mekalanos, J. J. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc. Natl Acad. Sci. USA 84, 2833–2837 (1987).

  15. 15.

    Mekalanos, J. J., Collier, R. J. & Romig, W. R. Simple method for purifying choleragenoid, the natural toxoid of Vibrio cholerae. Infect. Immun. 16, 789–795 (1977).

  16. 16.

    Finkelstein, R. A. & LoSpalluto, J. J. Pathogenesis of experimental cholera. Preparation and isolation of choleragen and choleragenoid. J. Exp. Med. 130, 185–202 (1969).

  17. 17.

    de Magny, G. C. et al. Role of zooplankton diversity in Vibrio cholerae population dynamics and in the incidence of cholera in the Bangladesh Sundarbans. Appl. Environ. Microbiol. 77, 6125–6132 (2011).

  18. 18.

    Broza, M., Gancz, H., Halpern, M. & Kashi, Y. Adult non-biting midges: possible windborne carriers of Vibrio cholerae non-O1 non-O139. Environ. Microbiol. 7, 576–585 (2005).

  19. 19.

    Halpern, M., Raats, D., Lavion, R. & Mittler, S. Dependent population dynamics between chironomids (nonbiting midges) and Vibrio cholerae. FEMS Microbiol. Ecol. 55, 98–104 (2006).

  20. 20.

    Echeverria, P., Harrison, B. A., Tirapat, C. & McFarland, A. Flies as a source of enteric pathogens in a rural village in Thailand. Appl. Environ. Microbiol. 46, 32–36 (1983).

  21. 21.

    Fotedar, R. Vector potential of houseflies (Musca domestica) in the transmission of Vibrio cholerae in India. Acta Trop. 78, 31–34 (2001).

  22. 22.

    Yildiz, F. H. & Schoolnik, G. K. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc. Natl Acad. Sci. USA 96, 4028–4033 (1999).

  23. 23.

    Watnick, P. I. & Kolter, R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol. Microbiol. 34, 586–595 (1999).

  24. 24.

    Purdy, A. E. & Watnick, P. I. Spatially selective colonization of the arthropod intestine through activation of Vibrio cholerae biofilm formation. Proc. Natl Acad. Sci. USA 108, 19737–19742 (2011).

  25. 25.

    Zhu, J. et al. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl Acad. Sci. USA 99, 3129–3134 (2002).

  26. 26.

    Van der Henst, C., Scrignari, T., Maclachlan, C. & Blokesch, M. An intracellular replication niche for Vibrio cholerae in the amoeba Acanthamoeba castellanii. ISME J. 10, 897–910 (2016).

  27. 27.

    Sun, S., Kjelleberg, S. & McDougald, D. Relative contributions of Vibrio polysaccharide and quorum sensing to the resistance of Vibrio cholerae to predation by heterotrophic protists. PLoS ONE 8, e56338 (2013).

  28. 28.

    Hoque, M. M. et al. Quorum regulated resistance of Vibrio cholerae against environmental bacteriophages. Sci. Rep. 6, 37956 (2016).

  29. 29.

    Thelin, K. H. & Taylor, R. K. Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains. Infect. Immun. 64, 2853–2856 (1996).

  30. 30.

    Joelsson, A., Liu, Z. & Zhu, J. Genetic and phenotypic diversity of quorum-sensing systems in clinical and environmental isolates of Vibrio cholerae. Infect. Immun. 74, 1141–1147 (2006).

  31. 31.

    Wang, Z., Hang, S., Purdy, A. E. & Watnick, P. I. Mutations in the IMD pathway and mustard counter Vibrio cholerae suppression of intestinal stem cell division in Drosophila. mBio 4, e00337-13 (2013).

  32. 32.

    Centers for Disease Control and Prevention. Update: outbreak of cholera—Haiti, 2010. Morb. Mortal. Wkly Rep. 59, 1586–1590 (2010).

  33. 33.

    Chin, C. S. et al. The origin of the Haitian cholera outbreak strain. N. Engl. J. Med. 364, 33–42 (2011).

  34. 34.

    Centers for Disease Control and Prevention. Cholera outbreak–Haiti, October 2010. Morb. Mortal. Wkly Rep. 59, 1411 (2010).

  35. 35.

    Azarian, T. et al. Phylodynamic analysis of clinical and environmental Vibrio cholerae isolates from Haiti reveals diversification driven by positive selection. mBio 5, e01824-14 (2014).

  36. 36.

    Vanhove, A. S. et al. Vibrio cholerae ensures function of host proteins required for virulence through consumption of luminal methionine sulfoxide. PLoS Pathog. 13, e1006428 (2017).

  37. 37.

    Plamann, M. D., Rapp, W. D. & Stauffer, G. V. Escherichia coli K12 mutants defective in the glycine cleavage enzyme system. Mol. Gen. Genet. 192, 15–20 (1983).

  38. 38.

    Hang, S. et al. The acetate switch of an intestinal pathogen disrupts host insulin signaling and lipid metabolism. Cell Host Microbe 16, 592–604 (2014).

  39. 39.

    Mancusso, R., Gregorio, G. G., Liu, Q. & Wang, D. N. Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature 491, 622–626 (2012).

  40. 40.

    Mingrone, G. & Castagneto, M. Medium-chain, even-numbered dicarboxylic acids as novel energy substrates: an update. Nutr. Rev. 64, 449–456 (2006).

  41. 41.

    Whereat, A. F., Hull, F. E. & Orishimo, M. W. The role of succinate in the regulation of fatty acid synthesis by heart mitochondria. J. Biol. Chem. 242, 4013–4022 (1967).

  42. 42.

    Chatterjee, D. et al. Control of metabolic adaptation to fasting by dILP6-induced insulin signaling in Drosophila oenocytes. Proc. Natl Acad. Sci. USA 111, 17959–17964 (2014).

  43. 43.

    Slaidina, M., Delanoue, R., Gronke, S., Partridge, L. & Leopold, P. A Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev. Cell 17, 874–884 (2009).

  44. 44.

    Honegger, B. et al. Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J. Biol. 7, 10 (2008).

  45. 45.

    Okamura, T., Shimizu, H., Nagao, T., Ueda, R. & Ishii, S. ATF-2 regulates fat metabolism in Drosophila. Mol. Biol. Cell 18, 1519–1529 (2007).

  46. 46.

    Musselman, L. P. et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Model Mech. 4, 842–849 (2011).

  47. 47.

    Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7, 77–85 (2005).

  48. 48.

    Bandarra, D., Biddlestone, J., Mudie, S., Muller, H. A. & Rocha, S. HIF-1α restricts NF-κB-dependent gene expression to control innate immunity signals. Dis. Model Mech. 8, 169–181 (2015).

  49. 49.

    Gronke, S. et al. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab. 1, 323–330 (2005).

  50. 50.

    Peterson, J. S., Timmons, A. K., Mondragon, A. A. & McCall, K. The end of the beginning: cell death in the germline. Curr. Top. Dev. Biol. 114, 93–119 (2015).

  51. 51.

    Michie, K. L., Cornforth, D. M. & Whiteley, M. Bacterial tweets and podcasts #signaling#eavesdropping#microbialfightclub. Mol. Biochem. Parasitol. 208, 41–48 (2016).

  52. 52.

    Jung, S. A., Chapman, C. A. & Ng, W. L. Quadruple quorum-sensing inputs control Vibrio cholerae virulence and maintain system robustness. PLoS Pathog. 11, e1004837 (2015).

  53. 53.

    Stutzmann, S. & Blokesch, M. Circulation of a quorum-sensing-impaired variant of Vibrio cholerae strain C6706 masks important phenotypes. mSphere 1, e00098-16 (2016).

  54. 54.

    Ruby, E. G. & McFall-Ngai, M. J. A squid that glows in the night: development of an animal-bacterial mutualism. J. Bacteriol. 174, 4865–4870 (1992).

  55. 55.

    Visick, K. L. & Ruby, E. G. Vibrio fischeri and its host: it takes two to tango. Curr. Opin. Microbiol. 9, 632–638 (2006).

  56. 56.

    McFall-Ngai, M. J. & Ruby, E. G. Symbiont recognition and subsequent morphogenesis as early events in an animal–bacterial mutualism. Science 254, 1491–1494 (1991).

  57. 57.

    Aschtgen, M. S. et al. Rotation of Vibrio fischeri flagella produces outer membrane vesicles that induce host development. J. Bacteriol. 198, 2156–2165 (2016).

  58. 58.

    Lee, K. H. & Ruby, E. G. Competition between Vibrio fischeri strains during initiation and maintenance of a light organ symbiosis. J. Bacteriol. 176, 1985–1991 (1994).

  59. 59.

    Fidopiastis, P. M., Miyamoto, C. M., Jobling, M. G., Meighen, E. A. & Ruby, E. G. LitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization. Mol. Microbiol. 45, 131–143 (2002).

  60. 60.

    Tamplin, M. L., Gauzens, A. L., Huq, A., Sack, D. A. & Colwell, R. R. Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl. Environ. Microbiol. 56, 1977–1980 (1990).

  61. 61.

    El-Bassiony, G. M., Luizzi, V., Nguyen, D., Stoffolano, J. G. Jr & Purdy, A. E. Vibrio cholerae laboratory infection of the adult house fly Musca domestica. Med. Vet. Entomol. 30, 392–402 (2016).

  62. 62.

    Zhang, Z. et al. Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol. 7, 58–63 (2011).

  63. 63.

    Jiang, C. et al. Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice. Diabetes 60, 2484–2495 (2011).

  64. 64.

    D’Ignazio, L., Bandarra, D. & Rocha, S. NF-κB and HIF crosstalk in immune responses. FEBS J. 283, 413–424 (2016).

  65. 65.

    Diehl, J. et al. Expression and localization of GPR91 and GPR99 in murine organs. Cell Tissue Res. 364, 245–262 (2016).

  66. 66.

    He, W. et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429, 188–193 (2004).

  67. 67.

    Regard, J. B., Sato, I. T. & Coughlin, S. R. Anatomical profiling of G protein-coupled receptor expression. Cell 135, 561–571 (2008).

  68. 68.

    McCreath, K. J. et al. Targeted disruption of the SUCNR1 metabolic receptor leads to dichotomous effects on obesity. Diabetes 64, 1154–1167 (2015).

  69. 69.

    Horton, R. M. et al. Gene splicing by overlap extension. Methods Enzymol. 217, 270–279 (1993).

  70. 70.

    Metcalf, W. W. et al. Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35, 1–13 (1996).

  71. 71.

    Haugo, A. J. & Watnick, P. I. Vibrio cholerae CytR is a repressor of biofilm development. Mol. Microbiol. 45, 471–483 (2002).

  72. 72.

    Houot, L., Chang, S., Pickering, B. S., Absalon, C. & Watnick, P. I. The phosphoenolpyruvate phosphotransferase system regulates Vibrio cholerae biofilm formation through multiple independent pathways. J. Bacteriol. 192, 3055–3067 (2010).

  73. 73.

    Smith, D. R. et al. In situ proteolysis of the Vibrio cholerae matrix protein RbmA promotes biofilm recruitment. Proc. Natl Acad. Sci. USA 112, 10491–10496 (2015).

  74. 74.

    Yuan, M., Breitkopf, S. B., Yang, X. & Asara, J. M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7, 872–881 (2012).

  75. 75.

    Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D. & Wishart, D. S. MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 40, W127–W133 (2012).

Download references

Acknowledgements

Microscopy was performed at the Microscopy Resources on the North Quad (MicRoN) core facility at Harvard Medical School. This work was supported by National Institutes of Health grants R21 AI109436 (P.I.W.) and R01 AI097405 (J.G.M.). Many stocks obtained from the Bloomington Drosophila Stock Center (NIH P40OD018537) and the Vienna Drosophila Resource Centre were used in this study. This work was partially supported by NIH grants 5P30CA006516 (J.M.A.) and 5P01CA120964 (J.M.A.). The authors thank S. Breitkopf and M. Yuan for help with mass spectrometry experiments, and R. Taylor for sharing strain C6706 with us. This skilled and generous scientist has left a great mark on the field and a void in our hearts.

Author information

Author notes

  1. Layla Kamareddine and Adam C.N. Wong contributed equally to this work.

Affiliations

  1. Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA

    • Layla Kamareddine
    • , Adam C. N. Wong
    • , Audrey S. Vanhove
    • , Saiyu Hang
    • , Alexandra E. Purdy
    • , Katharine Kierek-Pearson
    •  & Paula I. Watnick
  2. Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA

    • Adam C. N. Wong
  3. University of Massachusetts Medical School, Worcester, MA, USA

    • Saiyu Hang
  4. Department of Biology, AC #2237, Amherst College, Amherst, MA, USA

    • Alexandra E. Purdy
  5. Division of Signal Transduction/Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA, USA

    • John M. Asara
  6. Department of Medicine, Harvard Medical School, Boston, MA, USA

    • John M. Asara
  7. Emerging Pathogens Institute University of Florida, Gainesville, FL, USA

    • Afsar Ali
    •  & J. Glenn Morris Jr
  8. Department of Environmental & Global Health, School of Public Health and Health Profession, University of Florida, Gainesville, FL, USA

    • Afsar Ali
  9. Department of Microbiology and Immunobiology, Harvard Medical Schoolm, Boston, MA, USA

    • Paula I. Watnick

Authors

  1. Search for Layla Kamareddine in:

  2. Search for Adam C. N. Wong in:

  3. Search for Audrey S. Vanhove in:

  4. Search for Saiyu Hang in:

  5. Search for Alexandra E. Purdy in:

  6. Search for Katharine Kierek-Pearson in:

  7. Search for John M. Asara in:

  8. Search for Afsar Ali in:

  9. Search for J. Glenn Morris Jr in:

  10. Search for Paula I. Watnick in:

Contributions

L.K., A.C.N.W., A.S.V., S.H., J.M.A. and P.I.W. designed the experiments. L.K., A.C.N.W., A.S.V., S.H. and J.M.A. performed the experiments. K.K.-P., A.E.P., A.A. and J.G.M. contributed critical reagents. L.K., A.C.N.W., A.S.V., S.H., J.M.A. and P.I.W. analysed the data. P.I.W. wrote the manuscript. All authors reviewed, edited and approved the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Paula I. Watnick.

Electronic supplementary material

  1. Supplementary Information

    Supplementary Figures 1–9.

  2. Life Sciences Reporting Summary

  3. Supplementary Table 1

    Normalized levels of polar metabolites in LB broth and the spent supernatants of parental strain CH494 and corresponding ΔhapR and ΔhapRΔvpsA mutants.

  4. Supplementary Table 2

    Significantly different metabolites in the spent supernatants of the parental strain CH494 and corresponding ΔhapR and ΔhapRΔvpsA mutants calculated by a one-way ANOVA with FDR 0.05.

  5. Supplementary Table 3

    Strains and plasmids.

  6. Supplementary Table 4

    Primers used in this study.