Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Creating chirality in the nearly two dimensions

Abstract

Structural chirality, defined as the lack of mirror symmetry in materials’ atomic structure, is only meaningful in three-dimensional space. Yet two-dimensional (2D) materials, despite their small thickness, can show chirality that enables prominent asymmetric optical, electrical and magnetic properties. In this Perspective, we first discuss the possible definition and mathematical description of ‘2D chiral materials’, and the intriguing physics enabled by structural chirality in van der Waals 2D homobilayers and heterostructures, such as circular dichroism, chiral plasmons and the nonlinear Hall effect. We then summarize the recent experimental progress and approaches to induce and control structural chirality in 2D materials from monolayers to superlattices. Finally, we postulate a few unique opportunities offered by 2D chiral materials, the synthesis and new properties of which can potentially lead to chiral optoelectronic devices and possibly materials for enantioselective photochemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Types of chiral nearly 2D materials.
Fig. 2: Experimental observations of chiral scattering and transport properties in twisted bilayer graphene at optical, infrared and zero frequencies.
Fig. 3: Constructing chiral vdW systems using top-down manipulation and bottom-up synthesis.

Similar content being viewed by others

References

  1. Gasser, J. & Leutwyler, H. Chiral perturbation theory to one loop. Ann. Phys. 158, 142–210 (1984).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  CAS  Google Scholar 

  3. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  CAS  Google Scholar 

  4. Hsieh, D., Basov, D. N. & Averitt, R. D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    Article  ADS  PubMed  Google Scholar 

  5. Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  CAS  Google Scholar 

  6. Biot, J. B. Recherches expérimentales et mathématiques sur les mouvements des molécules de la lumiere autour de leur centre de gravité 408 (Firmin Didot, 1814).

  7. Turner, M. D. et al. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat. Photon. 7, 801–805 (2013).

    Article  ADS  CAS  Google Scholar 

  8. Verbiest, T. et al. Strong enhancement of nonlinear optical properties through supramolecular chirality. Science 282, 913–915 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019).

    Article  CAS  Google Scholar 

  10. Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Dryzun, C. & Avnir, D. On the abundance of chiral crystals. Chem. Commun. 48, 5874–5876 (2012).

    Article  CAS  Google Scholar 

  12. Fang, Y., Wang, F., Wang, R., Zhai, T. & Huang, F. 2D NbOI2: a chiral semiconductor with highly in-plane anisotropic electrical and optical properties. Adv. Mater. 33, 2101505 (2021).

    Article  CAS  Google Scholar 

  13. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Kreyszig, E. Differential Geometry (Dover Publications, 1991).

  15. Harris, A. B., Kamien, R. D. & Lubensky, T. C. Molecular chirality and chiral parameters. Rev. Mod. Phys. 71, 1745–1757 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Ding, F., Harutyunyan, A. R. & Yakobson, B. I. Dislocation theory of chirality-controlled nanotube growth. Proc. Natl Acad. Sci. USA 106, 2506–2509 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu, F., Yu, H., Sadrzadeh, A. & Yakobson, B. I. Riemann surfaces of carbon as graphene nanosolenoids. Nano Lett. 16, 34–39 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Wang, J. et al. Synthesis of a magnetic π-extended carbon nanosolenoid with Riemann surfaces. Nat. Commun. 13, 1239 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Castellanos-Gomez, A. Why all the fuss about 2D semiconductors? Nat. Photon. 10, 202–204 (2016).

    Article  ADS  CAS  Google Scholar 

  20. Li, G. et al. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2010).

    Article  Google Scholar 

  21. Carr, S. et al. Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B 95, 075420 (2017).

    Article  ADS  Google Scholar 

  22. Kim, C.-J. et al. Chiral atomically thin films. Nat. Nanotechnol. 11, 520–524 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Stauber, T. et al. Neutral magic-angle bilayer graphene: condon instability and chiral resonances. Small Sci. 3, 2200080 (2023).

    Article  CAS  Google Scholar 

  24. Huang, T. et al. Observation of chiral and slow plasmons in twisted bilayer graphene. Nature 605, 63–68 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Cheong, S.-W. SOS: symmetry-operational similarity. npj Quantum Mater. 4, 53 (2019).

    Article  ADS  Google Scholar 

  26. Margetis, D. & Stauber, T. Theory of plasmonic edge states in chiral bilayer systems. Phys. Rev. B 104, 115422 (2021).

    Article  ADS  CAS  Google Scholar 

  27. Huang, M. et al. Giant nonlinear Hall effect in twisted bilayer WSe2. Natl Sci. Rev. 10, nwac232 (2022).

  28. Duan, J. et al. Giant second-order nonlinear Hall effect in twisted bilayer graphene. Phys. Rev. Lett. 129, 186801 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. He, P. et al. Graphene moiré superlattices with giant quantum nonlinearity of chiral Bloch electrons. Nat. Nanotechnol. 17, 378–383 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Huang, M. et al. Intrinsic nonlinear Hall effect and gate-switchable Berry curvature sliding in twisted bilayer graphene. Phys. Rev. Lett. 131, 066301 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  ADS  PubMed  Google Scholar 

  32. Stauber, T., Low, T. & Gómez-Santos, G. Chiral response of twisted bilayer graphene. Phys. Rev. Lett. 120, 046801 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Stauber, T., González, J. & Gómez-Santos, G. Change of chirality at magic angles of twisted bilayer graphene. Phys. Rev. B 102, 081404 (2020).

    Article  ADS  CAS  Google Scholar 

  34. Hejazi, K., Luo, Z.-X. & Balents, L. Noncollinear phases in moiré magnets. Proc. Natl Acad. Sci. USA 117, 10721–10726 (2020).

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  35. Akram, M. et al. Moiré skyrmions and chiral magnetic phases in twisted CrX3 (X = I, Br, and Cl) bilayers. Nano Lett. 21, 6633–6639 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Bahamon, D. A., Gómez-Santos, G. & Stauber, T. Emergent magnetic texture in driven twisted bilayer graphene. Nanoscale 12, 15383–15392 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Gatti, G. et al. Radial spin texture of the Weyl fermions in chiral tellurium. Phys. Rev. Lett. 125, 216402 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Young, S. M. & Kane, C. L. Dirac semimetals in two dimensions. Phys. Rev. Lett. 115, 126803 (2015).

    Article  ADS  PubMed  Google Scholar 

  40. Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Zhao, Y. et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 13, 1007–1015 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Doran, N. J., Titterington, D. J., Ricco, B. & Wexler, G. A tight binding fit to the bandstructure of 2H-NbSe2 and NbS2. J. Phys. C 11, 685 (1978).

    Article  ADS  CAS  Google Scholar 

  43. Tong, Q. et al. Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys. 13, 356–362 (2017).

    Article  CAS  Google Scholar 

  44. Leykam, D., Andreanov, A. & Flach, S. Artificial flat band systems: from lattice models to experiments. Adv. Phys. X 3, 1473052 (2018).

    Google Scholar 

  45. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article  CAS  Google Scholar 

  46. Li, B. et al. Quasi-two-dimensional ferromagnetism and anisotropic interlayer couplings in the magnetic topological insulator MnBi2Te4. Phys. Rev. B 104, L220402 (2021).

    Article  ADS  CAS  Google Scholar 

  47. Yankowitz, M. et al. Dynamic band-structure tuning of graphene moiré superlattices with pressure. Nature 557, 404–408 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Lu, Z., Carr, S., Larson, D. T. & Kaxiras, E. Lithium intercalation in MoS2 bilayers and implications for moire flat bands. Phys. Rev. B 102, 125424 (2020).

    Article  ADS  CAS  Google Scholar 

  49. Sawada, S. & Hamada, N. Energetics of carbon nano-tubes. Solid State Commun. 83, 917–919 (1992).

    Article  ADS  CAS  Google Scholar 

  50. Ghosh, S., Bachilo, S. M. & Weisman, R. B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat. Nanotechnol. 5, 443–450 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Sakai, T., Sato, M., Okamoto, K., Okunishi, K. & Itoi, C. Quantum spin nanotubes—frustration, competing orders and criticalities. J. Phys. Condens. Matter 22, 403201 (2010).

    Article  PubMed  Google Scholar 

  52. Feng, X., Kwon, S., Park, J. Y. & Salmeron, M. Superlubric sliding of graphene nanoflakes on graphene. ACS Nano 7, 1718–1724 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    Article  ADS  CAS  Google Scholar 

  54. Hu, C. et al. In-situ twistable bilayer graphene. Sci. Rep. 12, 204 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, H. Y. et al. Tunable optical properties of thin films controlled by the interface twist angle. Nano Lett. 21, 2832–2839 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Zhang, Z., Tian, Z., Mei, Y. & Di, Z. Shaping and structuring 2D materials via kirigami and origami. Mater. Sci. Eng. R 145, 100621 (2021).

    Article  Google Scholar 

  57. Liu, Z. et al. Nano-kirigami with giant optical chirality. Sci. Adv. 4, eaat4436 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  58. Choi, W. J. et al. Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators. Nat. Mater. 18, 820–826 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Yang, Y. et al. Intrinsic toughening and stable crack propagation in hexagonal boron nitride. Nature 594, 57–61 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Koenig, S. P., Boddeti, N. G., Dunn, M. L. & Bunch, J. S. Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543–546 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Blees, M. K. et al. Graphene kirigami. Nature 524, 204–207 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Miskin, M. Z. et al. Graphene-based bimorphs for micron-sized, autonomous origami machines. Proc. Natl Acad. Sci. 115, 466–470 (2018).

  63. Lu, A.-Y. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Berry, J., Ristić, S., Zhou, S., Park, J. & Srolovitz, D. J. The MoSeS dynamic omnigami paradigm for smart shape and composition programmable 2D materials. Nat. Commun. 10, 5210 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  65. Liu, M., Zhang, L. & Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 115, 7304–7397 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Purcell-Milton, F. et al. Induction of chirality in two-dimensional nanomaterials: chiral 2D MoS2 nanostructures. ACS Nano 12, 954–964 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photon. 12, 528–533 (2018).

    Article  ADS  CAS  Google Scholar 

  68. Barros, E. B. et al. Review on the symmetry-related properties of carbon nanotubes. Phys. Rep. 431, 261–302 (2006).

    Article  ADS  CAS  Google Scholar 

  69. Xie, X. et al. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett. 9, 2565–2570 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Zhao, B. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Liao, M. et al. Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nat. Commun. 11, 2153 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tepliakov, N. V. et al. Chiral optical properties of tapered semiconductor nanoscrolls. ACS Nano 11, 7508–7515 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Qian, Q. et al. Chirality-dependent second harmonic generation of MoS2 nanoscroll with enhanced efficiency. ACS Nano 14, 13333–13342 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Xia, H. et al. Probing the chiral domains and excitonic states in individual WS2 tubes by second-harmonic generation. Nano Lett. 21, 4937–4943 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Liu, Y. et al. Helical van der Waals crystals with discretized Eshelby twist. Nature 570, 358–362 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Sutter, P., Wimer, S. & Sutter, E. Chiral twisted van der Waals nanowires. Nature 570, 354–357 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Yakobson, B. I. & Bets, K. V. Single-chirality nanotube synthesis by guided evolutionary selection. Sci. Adv. 8, eadd4627 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhao, Y. et al. Supertwisted spirals of layered materials enabled by growth on non-Euclidean surfaces. Science 370, 442–445 (2020).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  79. Aiello, C. D. et al. A chirality-based quantum leap. ACS Nano 16, 4989–5035 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mella, J. D. & Torres, L. E. F. F. Robustness of spin-polarized edge states in a two-dimensional topological semimetal without inversion symmetry. Phys. Rev. B 105, 075403 (2022).

    Article  ADS  CAS  Google Scholar 

  81. Lu, Q. et al. Observation of 2D Weyl fermion states in epitaxial bismuthene. Preprint at https://arxiv.org/abs/2303.02971 (2023).

  82. Cheong, S.-W. & Xu, X. Magnetic chirality. npj Quantum Mater. 7, 40 (2022).

    Article  ADS  Google Scholar 

  83. Hübener, H. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. 20, 438–442 (2021).

    Article  ADS  PubMed  Google Scholar 

  84. Zhu, H. et al. Observation of chiral phonons. Science 359, 579–582 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  85. Luo, J. et al. Large effective magnetic fields from chiral phonons in rare-earth halides. Science 382, 698–702 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Stauber, T., Low, T. & Gómez-Santos, G. Plasmon-enhanced near-field chirality in twisted van der waals heterostructures. Nano Lett. 20, 8711–8718 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Grohol, D. et al. Spin chirality on a two-dimensional frustrated lattice. Nat. Mater. 4, 323–328 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Ding, B. et al. Observation of magnetic skyrmion bubbles in a van der Waals ferromagnet Fe3GeTe2. Nano Lett. 20, 868–873 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Stern, M. V. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    Article  ADS  Google Scholar 

  90. Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

H.Z. acknowledges grants from the National Science Foundation (DMR-2240106) and the Welch Foundation (C-2128). B.I.Y. acknowledges the Office of Naval Research grants N00014-22-1-2788 and N00014-22-1-2753, and the Kavli Exploration Award in Nanoscience.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanyu Zhu or Boris I. Yakobson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Tobias Stauber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Yakobson, B.I. Creating chirality in the nearly two dimensions. Nat. Mater. 23, 316–322 (2024). https://doi.org/10.1038/s41563-024-01814-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-01814-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing