Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transiently delocalized states enhance hole mobility in organic molecular semiconductors

Abstract

Evidence shows that charge carriers in organic semiconductors self-localize because of dynamic disorder. Nevertheless, some organic semiconductors feature reduced mobility at increasing temperature, a hallmark for delocalized band transport. Here we present the temperature-dependent mobility in two record-mobility organic semiconductors: dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]-thiophene (DNTT) and its alkylated derivative, C8-DNTT-C8. By combining terahertz photoconductivity measurements with atomistic non-adiabatic molecular dynamics simulations, we show that while both crystals display a power-law decrease of the mobility (μ) with temperature (T) following μT n, the exponent n differs substantially. Modelling reveals that the differences between the two chemically similar semiconductors can be traced to the delocalization of the different states that are thermally accessible by charge carriers, which in turn depends on their specific electronic band structure. The emerging picture is that of holes surfing on a dynamic manifold of vibrationally dressed extended states with a temperature-dependent mobility that provides a sensitive fingerprint for the underlying density of states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular herringbone layer packing for the investigated OSs.
Fig. 2: T-dependent photoconductivity studies by OPTP spectroscopy in DNTT and C8-DNTT-C8.
Fig. 3: Frequency-dependent THz photoconductivity.
Fig. 4: DOS and state-resolved IPR.
Fig. 5: Temperature-dependent IPR and experimental and theoretical charge mobilities for DNTT and C8-DNTT-C8.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available in the Zenodo repository, https://zenodo.org/record/8109807. The full data for this study total a couple of terabytes and are in cold storage accessible by the corresponding authors and available upon reasonable request.

Code availability

The custom FOB-SH code for non-adiabatic molecular dynamics, the python code used for the DA analysis and other post-processing tools used for this study are available from the corresponding authors upon request.

References

  1. Oberhofer, H., Reuter, K. & Blumberger, J. Charge transport in molecular materials: an assessment of computational methods. Chem. Rev. 117, 10319–10357 (2017).

    Article  CAS  Google Scholar 

  2. Fratini, S., Mayou, D. & Ciuchi, S. The transient localization scenario for charge transport in crystalline organic materials. Adv. Funct. Mater. 26, 2292–2315 (2016).

    Article  CAS  Google Scholar 

  3. Troisi, A. Charge transport in high mobility molecular semiconductors: classical models and new theories. Chem. Soc. Rev. 40, 2347–2358 (2011).

    Article  CAS  Google Scholar 

  4. Giannini, S. & Blumberger, J. Charge transport in organic semiconductors: the perspective from nonadiabatic molecular dynamics. Acc. Chem. Res. 55, 819–830 (2022).

    Article  CAS  Google Scholar 

  5. Chang, J.-F. et al. Hall-effect measurements probing the degree of charge-carrier delocalization in solution-processed crystalline molecular semiconductors. Phys. Rev. Lett. 107, 066601 (2011).

    Article  Google Scholar 

  6. Sakanoue, T. & Sirringhaus, H. Band-like temperature dependence of mobility in a solution-processed organic semiconductor. Nat. Mater. 9, 736–740 (2010).

    Article  CAS  Google Scholar 

  7. Marumoto, K., Kuroda, S., Takenobu, T. & Iwasa, Y. Spatial extent of wave functions of gate-induced hole carriers in pentacene field-effect devices as investigated by electron spin resonance. Phys. Rev. Lett. 97, 256603 (2006).

    Article  Google Scholar 

  8. Matsui, H., Mishchenko, A. S. & Hasegawa, T. Distribution of localized states from fine analysis of electron spin resonance spectra in organic transistors. Phys. Rev. Lett. 104, 056602 (2010).

    Article  Google Scholar 

  9. Tsurumi, J. et al. Coexistence of ultra-long spin relaxation time and coherent charge transport in organic single-crystal semiconductors. Nat. Phys. 13, 994–998 (2017).

    Article  CAS  Google Scholar 

  10. Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    Article  CAS  Google Scholar 

  11. Karl, N. Charge carrier transport in organic semiconductors. Synth. Met. 133–134, 649–657 (2003).

    Article  Google Scholar 

  12. Yi, H. T., Gartstein, Y. N. & Podzorov, V. Charge carrier coherence and Hall effect in organic semiconductors. Sci. Rep. 6, 23650 (2016).

    Article  CAS  Google Scholar 

  13. Podzorov, V., Menard, E., Rogers, J. A. & Gershenson, M. E. Hall effect in the accumulation layers on the surface of organic semiconductors. Phys. Rev. Lett. 95, 226601 (2005).

    Article  CAS  Google Scholar 

  14. Jurchescu, O. D., Baas, J. & Palstra, T. T. M. Effect of impurities on the mobility of single crystal pentacene. Appl. Phys. Lett. 84, 3061–3063 (2004).

    Article  CAS  Google Scholar 

  15. Laarhoven, H. A. V. et al. On the mechanism of charge transport in pentacene. J. Chem. Phys. 129, 044704 (2008).

    Article  Google Scholar 

  16. Fratini, S., Nikolka, M., Salleo, A., Schweicher, G. & Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 19, 491–502 (2020).

    Article  CAS  Google Scholar 

  17. Fratini, S. & Ciuchi, S. Bandlike motion and mobility saturation in organic molecular semiconductors. Phys. Rev. Lett. 103, 266601 (2009).

    Article  CAS  Google Scholar 

  18. Mott, S. N. in Sir Nevill Mott – 65 Years in Physics (eds Mott, N. F. & Alexandrov, A. S.) 657–684 (World Scientific,1995).

  19. Ciuchi, S., Fratini, S. & Mayou, D. Transient localization in crystalline organic semiconductors. Phys. Rev. B 83, 081202 (2011).

    Article  Google Scholar 

  20. Fratini, S., Ciuchi, S., Mayou, D., de Laissardière, G. T. & Troisi, A. A map of high-mobility molecular semiconductors. Nat. Mater. 16, 998–1002 (2017).

    Article  CAS  Google Scholar 

  21. Nematiaram, T., Padula, D., Landi, A. & Troisi, A. On the largest possible mobility of molecular semiconductors and how to achieve it. Adv. Funct. Mater. 30, 2001906 (2020).

    Article  CAS  Google Scholar 

  22. Nelson, T. R. et al. Non-adiabatic excited-state molecular dynamics: theory and applications for modeling photophysics in extended molecular materials. Chem. Rev. 120, 2215–2287 (2020).

    Article  CAS  Google Scholar 

  23. Xie, W., Holub, D., Kubař, T. & Elstner, M. Performance of mixed quantum-classical approaches on modeling the crossover from hopping to bandlike charge transport in organic semiconductors. J. Chem. Theory Comput. 16, 2071–2084 (2020).

    Article  CAS  Google Scholar 

  24. Wang, L., Qiu, J., Bai, X. & Xu, J. Surface hopping methods for nonadiabatic dynamics in extended systems. WIREs Comput. Mol. Sci. 10, e1435 (2020).

    Article  CAS  Google Scholar 

  25. Giannini, S. et al. Quantum localization and delocalization of charge carriers in organic semiconducting crystals. Nat. Commun. 10, 3843 (2019).

    Article  Google Scholar 

  26. Giannini, S., Carof, A., Ellis, M., Ziogos, O. G. & Blumberger, J. From atomic orbitals to nano-scale charge transport with mixed quantum/classical non-adiabatic dynamics: method, implementation and application. Ch. 6, 172–202 (2021).

  27. Peng, B., He, Z., Chen, M. & Chan, P. K. L. Ultrahigh on‐current density of organic field‐effect transistors facilitated by molecular monolayer crystals. Adv. Funct. Mater. 32, 2202632 (2022).

    Article  CAS  Google Scholar 

  28. Mitsui, C. et al. High-performance solution-processable N-shaped organic semiconducting materials with stabilized crystal phase. Adv. Mater. 26, 4546–4551 (2014).

    Article  CAS  Google Scholar 

  29. Schweicher, G. et al. Chasing the ‘killer’ phonon mode for the rational design of low‐disorder, high‐mobility molecular semiconductors. Adv. Mater. 31, 1902407 (2019).

    Article  CAS  Google Scholar 

  30. Xi, J., Long, M., Tang, L., Wang, D. & Shuai, Z. First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale 4, 4348–4369 (2012).

    Article  CAS  Google Scholar 

  31. Sánchez-Carrera, R. S., Atahan, S., Schrier, J. & Aspuru-Guzik, A. Theoretical characterization of the air-stable, high-mobility dinaphtho[2,3-b:2′3′-f]thieno[3,2-b]-thiophene organic semiconductor.J. Phys.Chem. C 114, 2334–2340 (2010).

    Article  Google Scholar 

  32. Sokolov, A. N. et al. From computational discovery to experimental characterization of a high hole mobility organic crystal. Nat. Commun. 2, 437 (2011).

    Article  Google Scholar 

  33. Rußegger, N. et al. Molecular charge transfer effects on perylene diimide acceptor and dinaphthothienothiophene donor systems. J. Phys. Chem. C 126, 4188–4198 (2022).

    Article  Google Scholar 

  34. Xie, W. et al. Temperature-independent transport in high-mobility dinaphtho-thieno-thiophene (DNTT) single crystal transistors. Adv. Mater. 25, 3478–3484 (2013).

    Article  CAS  Google Scholar 

  35. Huang, Y. et al. Effectively modulating thermal activated charge transport in organic semiconductors by precise potential barrier engineering. Nat. Commun. 12, 21 (2021).

    Article  CAS  Google Scholar 

  36. Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).

    Article  CAS  Google Scholar 

  37. Hoberg, C., Balzerowski, P., Ockelmann, T. & Havenith, M. Ultrafast solvation dynamics probed by optical-pump THz-probe spectroscopy. In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2018).

  38. Jepsen, P. U., Cooke, D. G. & Koch, M. Terahertz spectroscopy and imaging – modern techniques and applications. Laser Photon. Rev. 5, 124–166 (2011).

    Article  CAS  Google Scholar 

  39. Glover, R. E. & Tinkham, M. Transmission of superconducting films at millimeter-microwave and far infrared frequencies. Phys. Rev. 104, 844–845 (1956).

    Article  CAS  Google Scholar 

  40. Huggard, P. G. et al. Drude conductivity of highly doped GaAs at terahertz frequencies. J. Appl. Phys. 87, 2382–2385 (2000).

    Article  CAS  Google Scholar 

  41. Fratini, S., Ciuchi, S. & Mayou, D. Phenomenological model for charge dynamics and optical response of disordered systems: application to organic semiconductors. Phys. Rev. B 89, 235201 (2014).

    Article  Google Scholar 

  42. Li, Z. Q. et al. Light quasiparticles dominate electronic transport in molecular crystal field-effect transistors. Phys. Rev. Lett. 99, 016403 (2007).

    Article  CAS  Google Scholar 

  43. Fischer, M., Dressel, M., Gompf, B., Tripathi, A. K. & Pflaum, J. Infrared spectroscopy on the charge accumulation layer in rubrene single crystals. Appl. Phys. Lett. 89, 182103 (2006).

    Article  Google Scholar 

  44. Yada, H. et al. Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz spectroscopy. Appl. Phys. Lett. 105, 143302 (2014).

    Article  Google Scholar 

  45. Harrelson, T. F. et al. Direct probe of the nuclear modes limiting charge mobility in molecular semiconductors. Mater. Horiz. 6, 182–191 (2019).

    Article  CAS  Google Scholar 

  46. Sleigh, J. P., McMahon, D. P. & Troisi, A. Effect of the intermolecular thermal motions on the tail of the electronic density of states in polyacene crystals. Appl. Phys. A Mater. Sci. Process. 95, 147–152 (2009).

    Article  CAS  Google Scholar 

  47. Giannini, S., Ziogos, O. G., Carof, A., Ellis, M. & Blumberger, J. Flickering polarons extending over ten nanometres mediate charge transport in high‐mobility organic crystals. Adv. Theory Simul. 3, 2070021 (2020).

    Article  Google Scholar 

  48. Carof, A., Giannini, S. & Blumberger, J. How to calculate charge mobility in molecular materials from surface hopping non-adiabatic molecular dynamics-beyond the hopping/band paradigm. Phys. Chem. Chem. Phys. 21, 26368–26386 (2019).

    Article  CAS  Google Scholar 

  49. Ghosh, S., Giannini, S., Lively, K. & Blumberger, J. Nonadiabatic dynamics with quantum nuclei: simulating charge transfer with ring polymer surface hopping. Faraday Discuss. 221, 501–525 (2020).

    Article  CAS  Google Scholar 

  50. Carof, A., Giannini, S. & Blumberger, J. Detailed balance, internal consistency, and energy conservation in fragment orbital-based surface hopping. J. Chem. Phys. 147, 214113 (2017).

    Article  Google Scholar 

  51. Jiang, Y. et al. Nuclear quantum tunnelling and carrier delocalization effects to bridge the gap between hopping and bandlike behaviors in organic semiconductors. Nanoscale Horiz. 1, 53–59 (2016).

    Article  CAS  Google Scholar 

  52. Shuai, Z., Li, W., Ren, J., Jiang, Y. & Geng, H. Applying Marcus theory to describe the carrier transports in organic semiconductors: limitations and beyond. J. Chem. Phys. 153, 080902 (2020).

    Article  CAS  Google Scholar 

  53. Li, W., Ren, J. & Shuai, Z. A general charge transport picture for organic semiconductors with nonlocal electron-phonon couplings. Nat. Commun. 12, 4260 (2021).

    Article  CAS  Google Scholar 

  54. Munn, R. W. & Silbey, R. Theory of electronic transport in molecular crystals. II. Zeroth order states incorporating nonlocal linear electron–phonon coupling. J. Chem. Phys. 83, 1843–1853 (1985).

    Article  CAS  Google Scholar 

  55. Giannini, S., Carof, A. & Blumberger, J. Crossover from hopping to band-like charge transport in an organic semiconductor model: atomistic nonadiabatic molecular dynamics simulation. J. Phys. Chem. Lett. 9, 3116–3123 (2018).

    Article  CAS  Google Scholar 

  56. Kang, M. J. et al. Alkylated dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophenes (Cn-DNTTs): organic semiconductors for high-performance thin-film transistors. Adv. Mater. 23, 1222–1225 (2011).

    Article  CAS  Google Scholar 

  57. Beard, M. C., Turner, G. M. & Schmuttenmaer, C. A. Terahertz spectroscopy. J. Phys. Chem. B 106, 7146–7159 (2002).

    Article  CAS  Google Scholar 

  58. Yada, H. et al. Evaluating intrinsic mobility from transient terahertz conductivity spectra of microcrystal samples of organic molecular semiconductors. Appl. Phys. Lett. 115, 143301 (2019).

    Article  Google Scholar 

  59. D’Angelo, F., Mics, Z., Bonn, M. & Turchinovich, D. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics. Opt. Express 22, 12475 (2014).

    Article  Google Scholar 

  60. Wang, Z. Y. et al. Correlating charge transport properties of conjugated polymers in solution aggregates and thin-film aggregates. Angew. Chem. Int. Ed. 60, 20483–20488 (2021).

    Article  CAS  Google Scholar 

  61. Smith, N. V. Drude theory and the optical properties of liquid mercury. Phys. Lett. A 26, 126–127 (1968).

    Article  CAS  Google Scholar 

  62. Smith, N. Classical generalization of the Drude formula for the optical conductivity. Phys. Rev. B 64, 155106 (2001).

    Article  Google Scholar 

  63. Wang, L., Prezhdo, O. V. & Beljonne, D. Mixed quantum-classical dynamics for charge transport in organics. Phys. Chem. Chem. Phys. 17, 12395–12406 (2015).

    Article  CAS  Google Scholar 

  64. Giannini, S. et al. Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization. Nat. Commun. 13, 2755 (2022).

    Article  CAS  Google Scholar 

  65. Sneyd, A. J., Beljonne, D. & Rao, A. A new frontier in exciton transport: transient delocalization. J. Phys. Chem. Lett. 13, 6820–6830 (2022).

    Article  CAS  Google Scholar 

  66. Sneyd, A. J. et al. Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization. Sci. Adv. 7, eabh4232 (2021).

    Article  CAS  Google Scholar 

  67. Prodhan, S., Giannini, S., Wang, L. & Beljonne, D. Long-range interactions boost singlet exciton diffusion in nanofibers of π-extended polymer chains. J. Phys. Chem. Lett. 12, 8188–8193 (2021).

  68. Gajdos, F. et al. Ultrafast estimation of electronic couplings for electron transfer between π-conjugated organic molecules. J. Chem. Theory Comput. 10, 4653–4660 (2014).

    Article  CAS  Google Scholar 

  69. Ziogos, O. G. & Blumberger, J. Ultrafast estimation of electronic couplings for electron transfer between π-conjugated organic molecules. II. J. Chem. Phys. 155, 244110 (2021).

    Article  CAS  Google Scholar 

  70. Tully, J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071 (1990).

    Article  CAS  Google Scholar 

  71. Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package – Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

S.G. and M. Bardini acknowledge C. Quarti for useful discussions. We are grateful to H. Burg and R. Berger for conducting scanning force microscopy measurements. This work received funding from the European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant no. 811284. J.H., K.B. and F.S. acknowledge funding by the German Research Foundation (BR4869/4-1 and SCHR 700/40-1). G.S. acknowledges financial support from the Francqui Foundation (Francqui Start-Up Grant) and the Belgian National Fund for Scientific Research (FNRS) for financial support through research project COHERENCE2 (N°F.4536.23). Y.H.G. is thankful to the FNRS for financial support through research projects Pi-Fast (no. T.0072.18) and Pi-Chir (no. T.0094.22). J.J.G. gratefully acknowledges support from the Alexander von Humboldt Foundation. The work in Mons has been funded by the Fund for Scientific Research (FRS) of FNRS within the Consortium des Équipements de Calcul Intensif (CÉCI) under grant 2.5020.11, and by the Walloon Region (ZENOBE Tier-1 supercomputer) under grant 1117545. G.S. is a FNRS Research Associate. D.B. is a FNRS research director.

Author information

Authors and Affiliations

Authors

Contributions

S.G. performed most of the quantum chemical calculations presented in this work and performed related data analysis (with input from J.E. and M. Bardini). M. Bardini and S.G. ran non-adiabatic dynamics simulations of charge transport for the systems investigated in this work. L.D.V. conducted the THz spectroscopy experiments and analysed the data together with M. Bardini. J.J.G., J.H. and K.B. prepared samples. L.D.V. and S.G. also performed the analysis of the experimental data using the DA model. M.V. synthesized C8-DNTT-C8. G.S. contributed to sample preparation and data interpretation. J.J.G. performed X-ray diffraction measurements. M. Bonn and Y.H.G. initiated the experimental study of charge transport in thienoacene semiconductors, at short length scales and timescales. D.B., J.B., H.I.W., F.S. and M. Bonn contributed to the data interpretation, and D.B., H.I.W. and M. Bonn supervised all aspects of the research. S.G., L.D.V., H.I.W. and D.B. designed the research and wrote the manuscript. All authors reviewed and discussed the manuscript.

Corresponding authors

Correspondence to Samuele Giannini, Hai I. Wang, Mischa Bonn or David Beljonne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Simone Fratini, Zhigang Shuai, Jun Takeya and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–30, Notes 1–24 and Tables 1–8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannini, S., Di Virgilio, L., Bardini, M. et al. Transiently delocalized states enhance hole mobility in organic molecular semiconductors. Nat. Mater. 22, 1361–1369 (2023). https://doi.org/10.1038/s41563-023-01664-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01664-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing