Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Revisiting point defects in ionic solids and semiconductors

The study of point defects in non-metallic crystals has become relevant for an increasing number of materials applications. Progress requires a foundation of consistent definitions and terminology. This Comment clarifies the underlying definitions of point defects, encourages the correct use of relative charge for their description and emphasizes their recognition as quasiparticles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Describing point defects with real charge or relative charge.
Fig. 2: Describing point-defect reactions with real charge or relative charge.

References

  1. Nikolaidis, P. & Poullikkas, A. Renew. Sustain. Energy Rev. 67, 597–611 (2017).

    Article  CAS  Google Scholar 

  2. Correa-Baena, J.-P. et al. Science 358, 739–744 (2017).

    Article  CAS  Google Scholar 

  3. Senocrate, A. & Maier, J. J. Am. Chem. Soc. 141, 8382–8396 (2019).

    Article  CAS  Google Scholar 

  4. Zhou, Y., Poli, I., Meggiolaro, D., De Angelis, F. & Petrozza, A. Nat. Rev. Mater. 6, 986–1002 (2021).

    Article  Google Scholar 

  5. Waser, R. & Aono, M. Nat. Mater. 6, 833–840 (2007).

    Article  CAS  Google Scholar 

  6. Yang, J. J., Strukov, D. B. & Stewart, D. R. Nat. Nanotechnol. 8, 13–24 (2013).

    Article  CAS  Google Scholar 

  7. Frenkel, J. Z. Phys. 35, 652–669 (1926).

    Article  CAS  Google Scholar 

  8. Wagner, C. & Schottky, W. Z. Phys. Chem. B 11, 163–210 (1930).

    CAS  Google Scholar 

  9. Wagner, C. Z. Phys. Chem. B 177, 177–186 (1931).

    Article  Google Scholar 

  10. Wagner, C. Z. Phys. Chem. B 22, 181–194 (1933).

    Article  Google Scholar 

  11. Jost, W. J. Chem. Phys. 1, 466–475 (1933).

    Article  CAS  Google Scholar 

  12. Schottky, W. Z. Phys. Chem. B 29, 335–355 (1935).

    Article  Google Scholar 

  13. Jost, W. Diffusion und Chemische Reaktion in festen Stoffen (Steinkopff, 1937).

  14. Rickert, H. Electrochemistry of Solids: An Introduction (Springer-Verlag, 1982).

  15. Schmalzried, H. Chemical Kinetics of Solids (Wiley-VCH, 1995).

  16. Smyth, D. M. The Defect Chemistry of Metal Oxides (Oxford Univ. Press, 2000).

  17. Maier, J. Physical Chemistry of Ionic Materials: Ions and Electrons in Solids (Wiley, 2004).

  18. Nowick, A. S. Annu. Rev. Mater. Sci. 26, 1–19 (1996).

    Article  CAS  Google Scholar 

  19. Mott, N. F. Defects in non-crystalline materials. Phil. Mag. B 51, 177–182 (1985).

    Article  CAS  Google Scholar 

  20. Stutzmann, M. The defect density in amorphous silicon. Phil. Mag. B 60, 531–546 (1989).

    Article  CAS  Google Scholar 

  21. Hiraoka, Y. et al. Proc. Natl Acad. Sci. USA 113, 7035–7040 (2016).

    Article  CAS  Google Scholar 

  22. Popescu, M. Thin Solid Films 121, 317–347 (1984).

    Article  CAS  Google Scholar 

  23. Schottky, W. & Stöckmann, F. in Halbleiterprobleme, Advances in Solid State Physics (ed. Schottky, W.) 80–106 (Springer, 1954).

  24. Rees, A. L. G. Chemistry of the Defect Solid State (Methuen, 1954).

  25. Kröger, F. A. & Vink, H. J. Solid State Phys. 3, 307–435 (1956).

    Article  Google Scholar 

  26. Norby, T. J. Kor. Ceram. Soc. 47, 19–25 (2010).

    Article  CAS  Google Scholar 

  27. De Souza, R. A. & Mueller, D. N. Nat. Mater. 20, 443–446 (2021).

    Article  Google Scholar 

  28. Pohl, R. W. Proc. Phys. Soc. 49, 3–31 (1937).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.D.S. acknowledges discussions with K. Rushchanskii. R.D.S. gratefully acknowledges support from the DFG (German Research Foundation) within the framework of the collaborative research centre ‘Nanoswitches’ (SFB 917) and within the Priority Programme ‘FieldsMatter’ (SPP1959) under project DE 2854/9-2. G.H. gratefully acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number [101031819 - OPTICS].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger De Souza.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Harry Tuller and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Souza, R., Harrington, G. Revisiting point defects in ionic solids and semiconductors. Nat. Mater. 22, 794–797 (2023). https://doi.org/10.1038/s41563-023-01583-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01583-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing