Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Extra electron reflections in concentrated alloys do not necessitate short-range order

In many concentrated alloys of current interest, the observation of diffuse superlattice intensities by transmission electron microscopy has been attributed to chemical short-range order. We briefly review these findings and comment on the plausibility of widespread interpretations, noting the absence of expected peaks, conflicts with theoretical predictions, and the possibility of alternative explanations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electron diffraction of CrCoNi in the \(\lceil \bar{1}12\rceil\) zone axis.
Fig. 2: Schematics of CuPt- and AlNi3-type orderings.
Fig. 3: Diffraction of CuPt-type ordering in the \(\lceil \bar{1}12\rceil\) zone axis.

References

  1. Ding, J., Yu, Q., Asta, M. & Ritchie, R. O. Proc. Natl Acad. Sci. USA 115, 8919–8924 (2018).

    Article  CAS  Google Scholar 

  2. Schönfeld, B. et al. Phys. Rev. B 99, 014206 (2019).

    Article  Google Scholar 

  3. Kostiuchenko, T., Ruban, A. V., Neugebauer, J., Shapeev, A. & Körmann, F. Phys. Rev. Mater. 4, 113802 (2020).

    Article  CAS  Google Scholar 

  4. Zhang, R. et al. Nature 581, 283–287 (2020).

    Article  CAS  Google Scholar 

  5. Zhou, D. et al. Scripta Mater. 191, 173–178 (2021).

    Article  CAS  Google Scholar 

  6. Inoue, K., Yoshida, S. & Tsuji, N. Phys. Rev. Mater. 5, 085007 (2021).

    Article  CAS  Google Scholar 

  7. Walsh, F., Asta, M. & Ritchie, R. O. Proc. Natl Acad. Sci. USA 118, e2020540118 (2021).

    Article  CAS  Google Scholar 

  8. Chen, X. et al. Nature 592, 712–716 (2021).

    Article  CAS  Google Scholar 

  9. Chen, X., Yuan, F., Zhou, H. & Wu, X. Mater. Res. Lett. 10, 149–155 (2022).

    Article  CAS  Google Scholar 

  10. Zhou, L. et al. Acta Mater. 224, 117490 (2022).

    Article  CAS  Google Scholar 

  11. Yu, P., Du, J.-P., Shinzato, S., Meng, F.-S. & Ogata, S. Acta Mater. 224, 117504 (2022).

    Article  CAS  Google Scholar 

  12. Du, J.-P. et al. Acta Mater. 240, 118314 (2022).

    Article  CAS  Google Scholar 

  13. Zhang, M. et al. Acta Mater. 241, 118380 (2022).

    Article  CAS  Google Scholar 

  14. Hsiao, H.-W. et al. Nat. Commun. 13, 6651 (2022).

    Article  CAS  Google Scholar 

  15. Su, Z. et al. Scripta Mater. 212, 114547 (2022).

    Article  CAS  Google Scholar 

  16. Ghosh, S., Sotskov, V., Shapeev, A. V., Neugebauer, J. & Körmann, F. Phys. Rev. Mater. 6, 113804 (2022).

    Article  CAS  Google Scholar 

  17. Li, L. et al. Acta Mater. 243, 118537 (2023).

    Article  CAS  Google Scholar 

  18. Zhu, M., Wang, J., Jiang, P., Yuan, F. & Wu, X. Intermetallics 158, 107896 (2023).

    Article  CAS  Google Scholar 

  19. Niu, C., LaRosa, C. R., Miao, J., Mills, M. J. & Ghazisaeidi, M. Nat. Commun. 9, 1363 (2018).

    Article  Google Scholar 

  20. Dong, Z., Schönecker, S., Li, W., Chen, D. & Vitos, L. Sci. Rep. 8, 12211 (2018).

    Article  Google Scholar 

  21. Kim, Y. S., Maeng, W. Y. & Kim, S. S. Acta Mater. 83, 507–515 (2015).

    Article  CAS  Google Scholar 

  22. Seol, J. B. et al. Acta Mater. 194, 366–377 (2020).

    Article  CAS  Google Scholar 

  23. Liu, D. et al. Mater. Today Nano 16, 100139 (2021).

    Article  CAS  Google Scholar 

  24. Kayani, S. H., Park, S., Kim, J. G., Seol, J. B. & Sung, H. Scripta Mater. 213, 114642 (2022).

    Article  CAS  Google Scholar 

  25. Seol, J. B. et al. Nat. Commun. 13, 6766 (2022).

    Article  CAS  Google Scholar 

  26. Xu, X. D. et al. Acta Mater. 84, 145–152 (2015).

    Article  CAS  Google Scholar 

  27. Miller, C. The Effects of Thermomechanical Processing and Annealing on the Microstructural Evolution and Stress Corrosion Cracking of Alloy 690 (Colorado School of Mines, 2016).

  28. Kawamura, M. et al. Acta Mater. 203, 116454 (2021).

    Article  CAS  Google Scholar 

  29. Khachaturyan, A. G. Theory of Structural Transformations in Solids (Dover, 2008).

  30. Xiao, H. Z. & Daykin, A. C. Ultramicroscopy 53, 325–331 (1994).

    Article  CAS  Google Scholar 

  31. Cherns, D. Phil. Mag. 30, 549–556 (1974).

    Article  CAS  Google Scholar 

  32. Cook, H. E. J. Phys. Chem. Solids 30, 1097–1112 (1969).

    Article  CAS  Google Scholar 

  33. Schönfeld, B., Reinhard, L., Kostorz, G. & Bührer, W. Phys. Status Solidi (b) 148, 457–471 (1988).

    Article  Google Scholar 

  34. Caudron, R. et al. J. Phys. I 2, 1145–1171 (1992).

    CAS  Google Scholar 

  35. Schönfeld, B. et al. Phys. Status Solidi (b) 183, 79–95 (1994).

    Article  Google Scholar 

  36. Bolloc’h, D. L., Finel, A. & Caudron, R. Phys. Rev. B 62, 12082–12088 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05CH11231 as part of the Damage-Tolerance in Structural Materials (KC13) program. Work at the Molecular Foundry was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under the same contract. Resources provided by award no. BES-ERCAP0021088 of the National Energy Research Scientific Computing Center, a US Department of Energy Office of Science User Facility operated under the same contract, were also used. F.W. additionally thanks Q. Yu for insightful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Asta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, F., Zhang, M., Ritchie, R.O. et al. Extra electron reflections in concentrated alloys do not necessitate short-range order. Nat. Mater. 22, 926–929 (2023). https://doi.org/10.1038/s41563-023-01570-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01570-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing