Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photo-expansion microscopy enables super-resolution imaging of cells embedded in 3D hydrogels

Abstract

Hydrogels are extensively used as tunable, biomimetic three-dimensional cell culture matrices, but optically deep, high-resolution images are often difficult to obtain, limiting nanoscale quantification of cell–matrix interactions and outside-in signalling. Here we present photopolymerized hydrogels for expansion microscopy that enable optical clearance and tunable ×4.6–6.7 homogeneous expansion of not only monolayer cell cultures and tissue sections, but cells embedded within hydrogels. The photopolymerized hydrogels for expansion microscopy formulation relies on a rapid photoinitiated thiol/acrylate mixed-mode polymerization that is not inhibited by oxygen and decouples monomer diffusion from polymerization, which is particularly beneficial when expanding cells embedded within hydrogels. Using this technology, we visualize human mesenchymal stem cells and their interactions with nascently deposited proteins at <120 nm resolution when cultured in proteolytically degradable synthetic polyethylene glycol hydrogels. Results support the notion that focal adhesion maturation requires cellular fibronectin deposition; nuclear deformation precedes cellular spreading; and human mesenchymal stem cells display cell-surface metalloproteinases for matrix remodelling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PhotoExM process and formulations.
Fig. 2: Isotropy and resolution of PhotoExM process.
Fig. 3: Super-resolution imaging of hMSCs and nascent deposited matrix in synthetic hydrogels.
Fig. 4: Nuclear architecture of hMSCs and evidence for cell-surface metalloproteinases.

Similar content being viewed by others

Data availability

The data used to prepare the figures, all displayed microscopy images and the raw images used to prepare these images are available at https://doi.org/10.25810/2eb5-8x48.

Code availability

The codes used for B-spline registration of the pre- and post-expansion images displayed in Fig. 2a are freely available at Koon et al.52.

References

  1. Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science 347, 543–548 (2015).

    Article  CAS  Google Scholar 

  2. Chozinski, T. J. et al. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat. Methods 13, 485–488 (2016).

    Article  CAS  Google Scholar 

  3. Tillberg, P. W. et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 34, 987–992 (2016).

    Article  CAS  Google Scholar 

  4. Truckenbrodt, S. et al. X10 expansion microscopy enables 25-nm resolution on conventional microscopes. EMBO Rep. 19, e45836 (2018).

    Article  Google Scholar 

  5. Zhao, Y. et al. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy. Nat. Biotechnol. 35, 757–764 (2017).

    Article  CAS  Google Scholar 

  6. Alon, S. et al. Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems. Science 371, aax2656 (2021).

    Article  Google Scholar 

  7. Chen, F. et al. Nanoscale imaging of RNA with expansion microscopy. Nat. Methods 13, 679–684 (2016).

    Article  CAS  Google Scholar 

  8. Asano, S. M. et al. Expansion microscopy: protocols for imaging proteins and RNA in cells and tissues. Curr. Protoc. Cell Biol. 80, e56 (2018).

    Article  Google Scholar 

  9. Gao, R. et al. A highly homogeneous polymer composed of tetrahedron-like monomers for high-isotropy expansion microscopy. Nat. Nanotechnol. 16, 698–707 (2021).

  10. Tibbitt, M. W., Kloxin, A. M., Sawicki, L. A. & Anseth, K. S. Mechanical properties and degradation of chain and step-polymerized photodegradable hydrogels. Macromolecules 46, 2785–2792 (2013).

    Article  CAS  Google Scholar 

  11. Cramer, N. B. & Bowman, C. N. Kinetics of thiol–ene and thiol–acrylate photopolymerizations with real-time Fourier transform infrared. J. Polym. Sci. A Polym. Chem. 39, 3311–3319 (2001).

    Article  CAS  Google Scholar 

  12. O’Brien, A. K., Cramer, N. B. & Bowman, C. N. Oxygen inhibition in thiol–acrylate photopolymerizations. J. Polym. Sci. A Polym. Chem. 44, 2007–2014 (2006).

    Article  Google Scholar 

  13. Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23 (2012).

    Article  Google Scholar 

  14. Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).

    Article  CAS  Google Scholar 

  15. Rosales, A. M. & Anseth, K. S. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 1, 15012 (2016).

    Article  CAS  Google Scholar 

  16. Rydholm, A. E., Bowman, C. N. & Anseth, K. S. Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial. Biomaterials 26, 4495–4506 (2005).

    Article  CAS  Google Scholar 

  17. Ye, S., Cramer, N. B. & Bowman, C. N. Relationship between glass transition temperature and polymerization temperature for cross-linked photopolymers. Macromolecules 44, 490–494 (2011).

    Article  CAS  Google Scholar 

  18. Jones, B. et al. Curing behavior, chain dynamics, and microstructure of high Tg thiol-acrylate networks with systematically varied network heterogeneity. Polymer 205, 122783 (2020).

    Article  CAS  Google Scholar 

  19. Lee, H. et al. Tetra-gel enables superior accuracy in combined super-resolution imaging and expansion microscopy. Sci. Rep. 1, 16944 (2021).

    Article  Google Scholar 

  20. Flory, P. J. Molecular size distribution in three dimensional polymers. I. Gelation. J. Am. Chem. Soc. 63, 3083–3090 (1941).

    Article  CAS  Google Scholar 

  21. Fairbanks, B. D., Schwartz, M. P., Bowman, C. N. & Anseth, K. S. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 30, 6702–6707 (2009).

    Article  CAS  Google Scholar 

  22. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  CAS  Google Scholar 

  23. Goulding, D., Bullard, B. & Gautel, M. A survey of in situ sarcomere extension in mouse skeletal muscle. J. Muscle Res. Cell Motil. 18, 465–472 (1997).

    Article  CAS  Google Scholar 

  24. Mauro, A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495 (1961).

    Article  CAS  Google Scholar 

  25. Blatchley, M. R. et al. In situ super‐resolution imaging of organoids and extracellular matrix interactions via photo‐transfer by allyl sulfide exchange-expansion microscopy (PhASE‐ExM). Adv. Mat. 18, 2109252 (2022).

    Article  Google Scholar 

  26. Loebel, C., Mauck, R. L. & Burdick, J. A. Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nat. Mater. 18, 883–891 (2019).

    Article  CAS  Google Scholar 

  27. Ferreira, S. A. et al. Bi-directional cell-pericellular matrix interactions direct stem cell fate. Nat. Commun. 9, 4049 (2018).

    Article  Google Scholar 

  28. Brown, T. E. et al. Secondary photocrosslinking of click hydrogels to probe myoblast mechanotransduction in three dimensions. J. Am. Chem. Soc. 140, 11585–11588 (2018).

    Article  CAS  Google Scholar 

  29. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    Article  CAS  Google Scholar 

  30. Li, C. W., Lau, Y. T., Lam, K. L. & Chan, B. P. Mechanically induced formation and maturation of 3D-matrix adhesions (3DMAs) in human mesenchymal stem cells. Biomaterials 258, 120292 (2020).

  31. Yamada, K. M. & Sixt, M. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 20, 738–752 (2019).

    Article  CAS  Google Scholar 

  32. Friedl, P., Wolf, K. & Lammerding, J. Nuclear mechanics during cell migration. Curr. Opin. Cell Biol. 23, 55–64 (2011).

    Article  CAS  Google Scholar 

  33. Cramer, L. P. Forming the cell rear first: breaking cell symmetry to trigger directed cell migration. Nat. Cell Biol. 12, 628–632 (2010).

    Article  CAS  Google Scholar 

  34. Wolf, K. et al. Collagen-based cell migration models in vitro and in vivo. Semin. Cell Dev. Biol. 20, 931–941 (2009).

    Article  CAS  Google Scholar 

  35. Wolf, K. et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013).

    Article  CAS  Google Scholar 

  36. Rehmann, M. S. et al. Tuning and predicting mesh size and protein release from step growth hydrogels. Biomacromolecules 18, 3131–3142 (2017).

    Article  CAS  Google Scholar 

  37. Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9, 893–904 (2007).

    Article  CAS  Google Scholar 

  38. Woskowicz, A. M., Weaver, S. A., Shitomi, Y., Ito, N. & Itoh, Y. MT-LOOP-dependent localization of membrane type I matrix metalloproteinase (MT1-MMP) to the cell adhesion complexes promotes cancer cell invasion. J. Biol. Chem. 288, 35126–35137 (2013).

    Article  CAS  Google Scholar 

  39. Shofuda, T. et al. Cleavage of focal adhesion kinase in vascular smooth muscle cells overexpressing membrane-type matrix metalloproteinases. Arterioscler. Thromb. Vasc. Biol. 24, 839–844 (2004).

    Article  CAS  Google Scholar 

  40. Paul, N. R. et al. α5β1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3. J. Cell Biol. 210, 1013–1031 (2015).

    Article  CAS  Google Scholar 

  41. Petrie, R. J. & Yamada, K. M. Multiple mechanisms of 3D migration: the origins of plasticity. Curr. Opin. Cell Biol. 42, 7–12 (2016).

    Article  CAS  Google Scholar 

  42. Xiao, P. et al. Visible light sensitive photoinitiating systems: recent progress in cationic and radical photopolymerization reactions under soft conditions. Prog. Polym. Sci. 41, 32–66 (2015).

    Article  CAS  Google Scholar 

  43. Hautanen, A., Gailit, J., Mann, D. M. & Ruoslahti, E. Effects of modifications of the RGD sequence and its context on recognition by the fibronectin receptor. J. Biol. Chem. 264, 1437–1442 (1989).

    Article  CAS  Google Scholar 

  44. Benoit, D. S. W. et al. Integrin-linked kinase production prevents anoikis in human mesenchymal stem cells. J. Biomed. Mater. Res. A 81, 259–268 (2007).

    Article  Google Scholar 

  45. Hennessy, K. M. et al. The effect of RGD peptides on osseointegration of hydroxyapatite biomaterials. Biomaterials 29, 3075–3083 (2008).

    Article  CAS  Google Scholar 

  46. Azagarsamy, M. A. & Anseth, K. S. Wavelength-controlled photocleavage for the orthogonal and sequential release of multiple proteins. Angew. Chem. Int. Ed. 52, 13803–13807 (2013).

  47. Grim, J. C. et al. A reversible and repeatable thiol–ene bioconjugation for dynamic patterning of signaling proteins in hydrogels. ACS Cent. Sci. 4, 909–916 (2018).

    Article  CAS  Google Scholar 

  48. Alisafaei, F., Jokhun, D. S., Shivashankar, G. V. & Shenoy, V. B. Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints. Proc. Natl Acad. Sci. USA 116, 13200–13209 (2019).

    Article  CAS  Google Scholar 

  49. Walker, C. J. et al. Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts. Nat. Biomed. Eng. 5, 1485–1499 (2021).

  50. Cosgrove, B. D. et al. Nuclear envelope wrinkling predicts mesenchymal progenitor cell mechano-response in 2D and 3D microenvironments. Biomaterials 270, 120662 (2021).

    Article  CAS  Google Scholar 

  51. Thevenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).

    Article  CAS  Google Scholar 

  52. Koon, D.-J. B-spline grid, image and point based registration v.1.33.0.0 (MathWorks, 2011).

  53. Vogler, T. O., Gadek, K. E., Cadwallader, A. B., Elston, T. L. & Olwin, B. B. Isolation, culture, functional assays, and immunofluorescence of myofiber-associated satellite cells. Methods Mol. Biol. 1460, 141–162 (2016).

    Article  Google Scholar 

  54. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014).

    Article  CAS  Google Scholar 

  55. Rao, V. V., Vu, M. K., Ma, H., Killaars, A. R. & Anseth, K. S. Rescuing mesenchymal stem cell regenerative properties on hydrogel substrates post serial expansion. Bioeng. Transl. Med. 4, 51–60 (2019).

    Article  CAS  Google Scholar 

  56. Dong, X., Al-Jumaily, A. & Escobar, I. C. Investigation of the use of a bio-derived solvent for non-solvent-induced phase separation (NIPS) fabrication of polysulfone membranes. Membranes 8, 23 (2018).

    Article  Google Scholar 

  57. Sim, S.-L. et al. Branched polyethylene glycol for protein precipitation. Biotechnol. Bioeng. 109, 736–746 (2012).

    Article  CAS  Google Scholar 

  58. Lu, S. & Anseth, K. S. Release behavior of high molecular weight solutes from poly(ethylene glycol)-based degradable networks. Macromolecules 33, 2509–2515 (2000).

    Article  CAS  Google Scholar 

  59. Cruise, G. M., Scharp, D. S. & Hubbell, J. A. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials 19, 1287–1294 (1998).

    Article  CAS  Google Scholar 

  60. Merrill, E. W., Dennison, K. A. & Sung, C. Partitioning and diffusion of solutes in hydrogels of poly(ethylene oxide). Biomaterials 14, 1117–1126 (1993).

    Article  CAS  Google Scholar 

  61. Lustig, S. R. & Peppas, N. A. Solute diffusion in swollen membranes. IX. Scaling laws for solute diffusion in gels. J. Appl. Polym. Sci. 36, 735–747 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (DE016523 and DK120921 to K.S.A. and AR049446 to B.B.O.). We thank J. Dragavon and the BioFrontiers Institute Advanced Light Microscopy Core (RRID, SCR 018302) for the discussions and support with confocal microscopes used in this study: a Nikon A1R confocal microscope via a National Institute of Standards and Technology University of Colorado (CU) cooperative grant (70NANB15H226) and an Imaris Workstation funded by a National Institutes of Health grant (1S10RR026680-01A1).

Author information

Authors and Affiliations

Authors

Contributions

K.A.G., B.B.O., E.S.B. and K.S.A. designed the experiments. K.A.G., T.-L.C., N.P.S. and V.V.R. carried out GtG experiments. K.A.G., L.J.M., N.P.S. and T.E.B. designed and prepared the PhotoExM formulations. T.-L.C., A.A.C. and J.S.S. carried out the expansion of muscle tissue sections and myofibres. K.A.G., N.P.S., C.Z. and C.-C.Y. carried out the non-rigid registration experiments. N.P.S. carried out the fluorophore photobleaching experiments. K.A.G. and K.S.A. wrote the paper. All authors contributed to the discussion of the data.

Corresponding author

Correspondence to Kristi S. Anseth.

Ethics declarations

Competing interests

E.S.B. discloses cofounding a company that pursues commercial applications of expansion microscopy. B.B.O. discloses a potential conflict of interest as a Scientific Advisory Board Member for Satellos Biosciences. The other authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Kwanghun Chung and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Tables 1 and 2 and References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günay, K.A., Chang, TL., Skillin, N.P. et al. Photo-expansion microscopy enables super-resolution imaging of cells embedded in 3D hydrogels. Nat. Mater. 22, 777–785 (2023). https://doi.org/10.1038/s41563-023-01558-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01558-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research