Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Eliminating lattice defects in metal–organic framework molecular-sieving membranes

Abstract

Metal–organic framework (MOF) membranes are energy-efficient candidates for molecular separations, but it remains a considerable challenge to eliminate defects at the atomic scale. The enlargement of pores due to defects reduces the molecular-sieving performance in separations and hampers the wider application of MOF membranes, especially for liquid separations, owing to insufficient stability. Here we report the elimination of lattice defects in MOF membranes based on a high-probability theoretical coordination strategy that creates sufficient chemical potential to overcome the steric hindrance that occurs when completely connecting ligands to metal clusters. Lattice defect elimination is observed by real-space high-resolution transmission electron microscopy and studied with a mathematical model and density functional theory calculations. This leads to a family of high-connectivity MOF membranes that possess ångström-sized lattice apertures that realize high and stable separation performance for gases, water desalination and an organic solvent azeotrope. Our strategy could enable a platform for the regulation of nanoconfined molecular transport in MOF pores.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Formation of MOF membranes with perfect lattices.
Fig. 2: Elimination of lattice defects in MOF membranes.
Fig. 3: Formation mechanism of lattice defects in MOF membranes.
Fig. 4: Molecular separation performance of MOF membranes.

Similar content being viewed by others

Data availability

All the data needed to evaluate the conclusions in the Article are present in the main text or the Supplementary Information. Source data are provided with this paper.

References

  1. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Article  Google Scholar 

  2. Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    Article  CAS  Google Scholar 

  3. Park, C. H. et al. Nanocrack-regulated self-humidifying membranes. Nature 532, 480–483 (2016).

    Article  Google Scholar 

  4. Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017).

    Article  CAS  Google Scholar 

  5. Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380–383 (2017).

    Article  CAS  Google Scholar 

  6. Jeon, M. Y. et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 543, 690–694 (2017).

    Article  CAS  Google Scholar 

  7. Shen, J. et al. Fast water transport and molecular sieving through ultrathin ordered conjugated-polymer-framework membranes. Nat. Mater. 21, 1183–1190 (2022).

    Article  CAS  Google Scholar 

  8. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  Google Scholar 

  9. Lively, R. P. & Sholl, D. S. From water to organics in membrane separations. Nat. Mater. 16, 276–279 (2017).

    Article  CAS  Google Scholar 

  10. Shen, J., Liu, G. P., Han, Y. & Jin, W. Q. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).

    Article  CAS  Google Scholar 

  11. Knebel, A. & Caro, J. Metal–organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. Nat. Nanotechnol. 17, 911–923 (2022).

    Article  CAS  Google Scholar 

  12. Peng, Y. et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    Article  CAS  Google Scholar 

  13. Rodenas, T. et al. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015).

    Article  CAS  Google Scholar 

  14. Cui, X. et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 353, 141–144 (2016).

    Article  CAS  Google Scholar 

  15. Knebel, A. et al. Defibrillation of soft porous metal-organic frameworks with electric fields. Science 358, 347–351 (2017).

    Article  CAS  Google Scholar 

  16. Liu, G. et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat. Mater. 17, 283–289 (2018).

    Article  CAS  Google Scholar 

  17. Ma, X. et al. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science 361, 1008–1011 (2018).

    Article  CAS  Google Scholar 

  18. Knebel, A. et al. Solution processable metal-organic frameworks for mixed matrix membranes using porous liquids. Nat. Mater. 19, 1346–1353 (2020).

    Article  CAS  Google Scholar 

  19. Zhou, S. et al. Asymmetric pore windows in MOF membranes for natural gas valorization. Nature 606, 706–712 (2022).

    Article  CAS  Google Scholar 

  20. Datta, S. J. et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations. Science 376, 1080–1087 (2022).

    Article  CAS  Google Scholar 

  21. Dong, J. et al. Free-standing homochiral 2D monolayers by exfoliation of molecular crystals. Nature 602, 606–611 (2022).

    Article  CAS  Google Scholar 

  22. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    Article  Google Scholar 

  23. Qiu, S., Xue, M. & Zhu, G. Metal–organic framework membranes: from synthesis to separation application. Chem. Soc. Rev. 43, 6116–6140 (2014).

    Article  CAS  Google Scholar 

  24. Denny, M. S., Moreton, J. C., Benz, L. & Cohen, S. M. Metal-organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 16078 (2016).

    Article  CAS  Google Scholar 

  25. Shearer, G. C. et al. Tuned to perfection: ironing out the defects in metal–organic framework UiO-66. Chem. Mater. 26, 4068–4071 (2014).

    Article  CAS  Google Scholar 

  26. Cliffe, M. J. et al. Correlated defect nanoregions in a metal–organic framework. Nat. Commun. 5, 4176 (2014).

    Article  CAS  Google Scholar 

  27. Fang, Z., Bueken, B., De Vos, D. E. & Fischer, R. A. Defect‐engineered metal–organic frameworks. Angew. Chem. Int. Ed. 54, 7234–7254 (2015).

    Article  CAS  Google Scholar 

  28. Bennett, T. D., Cheetham, A. K., Fuchs, A. H. & Coudert, F.-X. Interplay between defects, disorder and flexibility in metal-organic frameworks. Nat. Chem. 9, 11–16 (2017).

    Article  CAS  Google Scholar 

  29. Pan, Y., Li, T., Lestari, G. & Lai, Z. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. J. Membr. Sci. 390, 93–98 (2012).

    Article  Google Scholar 

  30. Brown, A. J. et al. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science 345, 72–75 (2014).

    Article  CAS  Google Scholar 

  31. Venna, S. R. & Carreon, M. A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J. Am. Chem. Soc. 132, 76–78 (2010).

    Article  CAS  Google Scholar 

  32. Zhang, H., Liu, D., Yao, Y., Zhang, B. & Lin, Y. Stability of ZIF-8 membranes and crystalline powders in water at room temperature. J. Membr. Sci. 485, 103–111 (2015).

    Article  CAS  Google Scholar 

  33. Jian, M. et al. Ultrathin water-stable metal-organic framework membranes for ion separation. Sci. Adv. 6, eaay3998 (2020).

    Article  CAS  Google Scholar 

  34. Liu, X., Demir, N. K., Wu, Z. & Li, K. Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 137, 6999–7002 (2015).

    Article  CAS  Google Scholar 

  35. Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Article  Google Scholar 

  36. Liu, X. L., Wang, X. R. & Kapteijn, F. Water and metal-organic frameworks: from interaction toward utilization. Chem. Rev. 120, 8303–8377 (2020).

    Article  CAS  Google Scholar 

  37. Cong, S. Z. et al. Highly water-permeable metal-organic framework MOF-303 membranes for desalination. J. Am. Chem. Soc. 143, 20055–20058 (2021).

    Article  CAS  Google Scholar 

  38. Yuan, S. et al. Stable metal–organic frameworks: design, synthesis, and applications. Adv. Mater. 30, 1704303 (2018).

    Article  Google Scholar 

  39. Wang, X. L. et al. Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nat. Commun. 13, 266 (2022).

    Article  CAS  Google Scholar 

  40. Yan, J. H. et al. Room-temperature synthesis of defect-engineered zirconium-MOF membrane enabling superior CO2/N2 selectivity with zirconium-oxo cluster source. J. Membr. Sci. 653, 120496 (2022).

    Article  CAS  Google Scholar 

  41. Lee, T. H. et al. Defect engineering in metal-organic frameworks towards advanced mixed matrix membranes for efficient propylene/propane separation. Angew. Chem. Int. Ed. 60, 13081–13088 (2021).

    Article  CAS  Google Scholar 

  42. Guillerm, V. & Eddaoudi, M. The importance of highly connected building units in reticular chemistry: thoughtful design of metal–organic frameworks. Acc. Chem. Res. 54, 3298–3312 (2021).

    Article  CAS  Google Scholar 

  43. Furukawa, H. et al. Water adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014).

    Article  CAS  Google Scholar 

  44. Song, C., Wang, P. & Makse, H. A. A phase diagram for jammed matter. Nature 453, 629–632 (2008).

    Article  CAS  Google Scholar 

  45. Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials. Science 359, 675–679 (2018).

    Article  CAS  Google Scholar 

  46. Chen, Z. et al. Enhanced separation of butane isomers via defect control in a fumarate/zirconium-based metal organic framework. Langmuir 34, 14546–14551 (2018).

    Article  CAS  Google Scholar 

  47. Shearer, G. C. et al. Defect engineering: tuning the porosity and composition of the metal–organic framework UiO-66 via modulated synthesis. Chem. Mater. 28, 3749–3761 (2016).

    Article  CAS  Google Scholar 

  48. Dissegna, S. et al. Tuning the mechanical response of metal–organic frameworks by defect engineering. J. Am. Chem. Soc. 140, 11581–11584 (2018).

    Article  CAS  Google Scholar 

  49. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).

    Article  CAS  Google Scholar 

  50. Zhou, S. et al. Electrochemical synthesis of continuous metal–organic framework membranes for separation of hydrocarbons. Nat. Energy 6, 882–891 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank X. Ren (School of Chemistry and Molecular Engineering, Nanjing Tech University) for discussions. W.Q.J. acknowledges funding from the National Natural Science Foundation of China (grant numbers 22038006 and 21921006) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). G.P.L. acknowledges funding from the National Natural Science Foundation of China (grant number 22278210) and the Natural Science Foundation of Jiangsu Province (grant number BK20220002). G.Z.L. acknowledges funding from the Project funded by the China Postdoctoral Science Foundation (grant numbers 2022TQ0147 and 2022M721584). We thank the High-Performance Computing Center of Nanjing Tech University for supporting the computational resources.

Author information

Authors and Affiliations

Authors

Contributions

W.J. and Gongping Liu conceived the idea. W.J., Gongping Liu and Guozhen Liu designed the experiments, analysed the data and wrote the manuscript. Guozhen Liu synthesized and characterized the membranes. Y.G. conducted the density functional theory simulations. C.C. and Y.H. collected and analysed the low-dose HRTEM data. Y.L. conducted and analysed the probability calculations. G.C. collected and analysed the Powder XRD data. Guozhen Liu, Y.G., C.C., Y.L., Gongping Liu, Y.H., W.J. and N.X. discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Gongping Liu or Wanqin Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 HRTEM of perfect lattice in Zr-MOF(BDC) membrane.

Image processing of the labelled region in Supplementary Fig. 18. (a) Raw image (b) the corresponding Fourier transform; (c) CTF-corrected image; (d) ABSF-filtered CTF-corrected image.

Extended Data Fig. 2 HRTEM of defective lattice in Zr-MOF(BDC) membrane.

Image processing of the labelled region in Supplementary Fig. 19. (a) Raw image (b) the corresponding Fourier transform; (c) CTF-corrected image; (d) ABSF-filtered CTF-corrected image.

Extended Data Fig. 3 NMR analysis of lattice defects in Zr-MOF membranes.

1H NMR spectra of Zr-MOF(fumarate) (a) and Zr-MOF(BDC) (b) membranes synthesized using ligand/SBU stoichiometric ratio.

Source data

Extended Data Fig. 4 DFT calculations.

The diagram for models of Zr-MOF(fumarate) with one Zr6O4(OH)412+ metal cluster and five ligands in a specific direction (regarded as Zr6O4(OH)412+/fumarate) (a) from the optimized crystal structure of Zr-MOF(fumarate) (b) and ZIF-8 with one Zn2+ and four mIm ligands, regarded as Zn2+/mIm (c) from the optimized crystal structure of ZIF-8 (d).

Extended Data Fig. 5 Methanol/DMC separation.

Long-term stability of methanol/DMC separation of Zr-MOF(fumarate) membrane, the feed concentration of methanol is 10 wt% and the operating temperature is 50 oC.

Source data

Extended Data Fig. 6 Universal of various substrates for Zr-MOF membrane synthesis.

Digital photos of various substrates (S) and SEM surface and cross-sectional images of Zr-MOF(fumarate) membrane (M) synthesized on different substrates including PAN, PVDF, Yttria Stabilized Zirconia (YSZ) hollow fiber and ceramic tube.

Supplementary information

Supplementary Information

Supplementary Figs. 1–59, Tables 1–13, Methods, Text and references.

Supplementary Data 1

The atomic coordinates of the models for the energy scan calculations in Fig. 3d.

Supplementary Data 2

The atomic coordinates of the models for the electrostatic potential (ESP) calculations in Fig. 3e.

Supplementary Data 3

The atomic coordinates of the models for the average local ionization energy (ALIE) calculations in Supplementary Fig. 32.

Source data

Source Data Fig. 2

Source data for PXRD data plotted in Fig. 2g, CO2 adsorption plotted in Fig. 2h, N2 adsorption plotted in Fig. 2i and 1H NMR data plotted in Fig. 2j.

Source Data Fig. 3

Source data for connectivity and H2/CO2 selectivity plotted in Fig. 3a,b, expectation connectivity in Fig. 3c and potential energy barriers plotted in Fig. 3d.

Source Data Fig. 4

Source data for H2/CO2 separation plotted in Fig. 4a, and comparison to literature in Fig. 4b, permeation rate of ions in Fig. 4c, water flux and NaCl selectivity in Fig. 4d and comparison to literature in Fig. 4e, and water/DMC separation factor and flux in Fig. 4f.

Source Data Extended Data Fig. 3

Source data for NMR data plotted in Extended Data Fig. 3.

Source Data Extended Data Fig. 5

Source data for long-term water/DMC separation performance plotted in Extended Data Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Guo, Y., Chen, C. et al. Eliminating lattice defects in metal–organic framework molecular-sieving membranes. Nat. Mater. 22, 769–776 (2023). https://doi.org/10.1038/s41563-023-01541-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01541-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing