Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of anti-damping spin–orbit torques generated by in-plane and out-of-plane spin polarizations in MnPd3

Abstract

Large spin–orbit torques (SOTs) generated by topological materials and heavy metals interfaced with ferromagnets are promising for next-generation magnetic memory and logic devices. SOTs generated from y spin originating from spin Hall and Edelstein effects can realize field-free magnetization switching only when the magnetization and spin are collinear. Here we circumvent the above limitation by utilizing unconventional spins generated in a MnPd3 thin film grown on an oxidized silicon substrate. We observe conventional SOT due to y spin, and out-of-plane and in-plane anti-damping-like torques originated from z spin and x spin, respectively, in MnPd3/CoFeB heterostructures. Notably, we have demonstrated complete field-free switching of perpendicular cobalt via out-of-plane anti-damping-like SOT. Density functional theory calculations show that the observed unconventional torques are due to the low symmetry of the (114)-oriented MnPd3 films. Altogether our results provide a path toward realization of a practical spin channel in ultrafast magnetic memory and logic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of MnPd3 thin film.
Fig. 2: SOT characterization using the SHH technique on Si/SiO2/MnPd3 (x nm)/CoFeB (5 nm)/MgO (2 nm)/Ta (2 nm).
Fig. 3: Demonstration of external magnetic field-free out-of-plane magnetization switching via z spin polarization generated anti-damping SOT.
Fig. 4: Effect of (114) texture on the spin polarization.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

Code availability

The code used for the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).

    Article  Google Scholar 

  2. Grimaldi, E. et al. Single-shot dynamics of spin–orbit torque and spin transfer torque switching in three-terminal magnetic tunnel junctions. Nat. Nanotechnol. 15, 111–117 (2020).

    Article  CAS  Google Scholar 

  3. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article  CAS  Google Scholar 

  4. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material via spin–orbit magnetic field. Nat. Phys. 5, 656 (2008).

    Article  Google Scholar 

  5. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  6. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  Google Scholar 

  7. Cho, S., Chris Baek, S., Lee, K.-D., Jo, Y. & Park, B.-G. Large spin Hall magnetoresistance and its correlation to the spin–orbit torque in W/CoFeB/MgO structures. Sci. Rep. 5, 14668 (2015).

    Article  CAS  Google Scholar 

  8. Fukami, S., Anekawa, T., Zhang, C. & Ohno, H. A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nat. Nanotechnol. 11, 621–626 (2016).

    Article  CAS  Google Scholar 

  9. Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    Article  CAS  Google Scholar 

  10. Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

    Article  CAS  Google Scholar 

  11. Kondou, K. et al. Fermi level dependent charge-to-spin current conversion by Dirac surface state of topological insulators. Nat. Phys. 12, 1027–1032 (2016).

    Article  CAS  Google Scholar 

  12. DC, M. et al. Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1−x) films. Nat. Mater. 17, 800–807 (2018).

    Article  CAS  Google Scholar 

  13. Khang, N., Khang, D., Ueda, Y. & Hai, P. N. A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching. Nat. Mater. 17, 808–813 (2018).

    Article  CAS  Google Scholar 

  14. Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).

    Article  CAS  Google Scholar 

  15. Oh, Y. W. et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat. Nanotechnol. 11, 878–884 (2016).

    Article  CAS  Google Scholar 

  16. Zhang, W. et al. Giant facet-dependent spin–orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Sci. Adv. 2, e1600759 (2016).

    Article  Google Scholar 

  17. Chen, J.-Y. et al. Field-free spin–orbit torque switching of composite perpendicular CoFeB/Gd/CoFeB layers utilized for three-terminal magnetic tunnel junctions. Appl. Phys. Lett. 111, 012402 (2017).

    Article  Google Scholar 

  18. Nan, T. et al. Controlling spin current polarization through non-collinear antiferromagnetism. Nat. Commun. 11, 4671 (2020).

    Article  CAS  Google Scholar 

  19. Macneill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300–306 (2017).

    Article  CAS  Google Scholar 

  20. Shi, S. et al. All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 14, 945–949 (2019).

    Article  CAS  Google Scholar 

  21. Song, P. et al. Coexistence of large conventional and planar spin Hall effect with long spin diffusion length in a low-symmetry semimetal at room temperature. Nat. Mater. 19, 292–298 (2020).

    Article  CAS  Google Scholar 

  22. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1106 (2011).

    Article  CAS  Google Scholar 

  23. Zhao, B. et al. Unconventional charge–spin conversion in Weyl-semimetal WTe2. Adv. Mater. 32, 2000818 (2020).

    Article  CAS  Google Scholar 

  24. Baek, S. C. et al. Spin currents and spin–orbit torques in ferromagnetic trilayers. Nat. Mater. 17, 509–513 (2018).

    Article  CAS  Google Scholar 

  25. Lee, D. & Lee, K. Spin-orbit torque switching of perpendicular magnetization in ferromagnetic trilayers. Sci. Rep. 10, 1772 (2020).

    Article  CAS  Google Scholar 

  26. Li, X. et al. Materials requirements of high-speed and low-power spin–orbit–torque magnetic random-access memory. IEEE J. Electron Devices Soc. 8, 674–680 (2020).

    Article  Google Scholar 

  27. Mangin, S. et al. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater. 5, 210–215 (2006).

    Article  CAS  Google Scholar 

  28. Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat. Nanotechnol. 9, 548–554 (2014).

    Article  CAS  Google Scholar 

  29. Chen, S. et al. Free field electric switching of perpendicular magnetized thin film by spin current gradient. ACS Appl. Mater. Interfaces 11, 30446–30452 (2019).

  30. Shu, X. et al. Field-free switching of perpendicular magnetization induced by longitudinal spin–orbit–torque gradient. Phys. Rev. Appl. 17, 024031 (2022).

    Article  CAS  Google Scholar 

  31. You, L. et al. Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy. Proc. Natl Acad. Sci. USA 112, 10310–10315 (2015).

    Article  CAS  Google Scholar 

  32. Liu, L. et al. Current-induced magnetization switching in all-oxide heterostructures. Nat. Nanotechnol. 14, 939–944 (2019).

    Article  CAS  Google Scholar 

  33. Zhao, Z., Smith, A. K., Jamali, M. & Wang, J. P. External-field-free spin Hall switching of perpendicular magnetic nanopillar with a dipole-coupled composite structure. Adv. Electron. Mater. 6, 1901368 (2020).

    Article  CAS  Google Scholar 

  34. Krizakova, V., Garello, K., Grimaldi, E., Kar, G. S. & Gambardella, P. Field-free switching of magnetic tunnel junctions driven by spin–orbit torques at sub-ns timescales. Appl. Phys. Lett. 116, 232406 (2020).

    Article  CAS  Google Scholar 

  35. Liu, L. et al. Symmetry-dependent field-free switching of perpendicular magnetization. Nat. Nanotechnol. 16, 277–282 (2021).

    Article  Google Scholar 

  36. Wang, M. et al. Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin–transfer torques. Nat. Electron. 1, 582–588 (2018).

    Article  Google Scholar 

  37. Avci, C. O. et al. Interplay of spin–orbit torque and thermoelectric effects in ferromagnet/normal-metal bilayers. Phys. Rev. B 90, 224427 (2014).

    Article  Google Scholar 

  38. Chen, Y.-T. et al. Theory of spin Hall magnetoresistance. Phys. Rev. B 87, 144411 (2013).

    Article  Google Scholar 

  39. Zhang, W., Han, W., Jiang, X., Yang, S.-H. & Parkin, S. S. P. Role of transparency of platinum–ferromagnet interfaces in determining the intrinsic magnitude of the spin Hall effect. Nat. Phys. 11, 496–503 (2015).

    Article  CAS  Google Scholar 

  40. Pai, C. F., Ou, Y., Vilela-Leão, L. H., Ralph, D. C. & Buhrman, R. A. Dependence of the efficiency of spin Hall torque on the transparency of Pt/ferromagnetic layer interfaces. Phys. Rev. B 92, 064426 (2015).

    Article  Google Scholar 

  41. Zhang, W. et al. Spin Hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113, 196602 (2014).

    Article  Google Scholar 

  42. Okada, A. et al. Spin-pumping-free determination of spin–orbit torque efficiency from spin–torque ferromagnetic resonance. Phys. Rev. Appl. 12, 014040 (2019).

    Article  CAS  Google Scholar 

  43. Zhu, L., Ralph, D. C. & Buhrman, R. A. Spin–orbit torques in heavy-metal-ferromagnet bilayers with varying strengths of interfacial spin–orbit coupling. Phys. Rev. Lett. 122, 77201 (2019).

    Article  CAS  Google Scholar 

  44. Feng, J. et al. Effects of oxidation of top and bottom interfaces on the electric, magnetic, and spin–orbit torque properties of Pt/Co/AlOx trilayers. Phys. Rev. Appl. 13, 044029 (2020).

    Article  CAS  Google Scholar 

  45. Zhu, L. et al. Strong damping-like spin–orbit torque and tunable Dzyaloshinskii–Moriya interaction generated by low-resistivity Pd1−xPtx alloys. Adv. Funct. Mater. 29, 1805822 (2019).

    Article  Google Scholar 

  46. Cao, J. et al. Spin–orbit torque induced magnetization switching in Ta/Co20Fe60B20/MgO structures under small in-plane magnetic fields. Appl. Phys. Lett. 108, 172404 (2016).

    Article  Google Scholar 

  47. Baumgartner, M. et al. Spatially and time-resolved magnetization dynamics driven by spin–orbit torques. Nat. Nanotechnol. 12, 980–986 (2017).

    Article  CAS  Google Scholar 

  48. Coldea, M. et al. X-ray photoelectron spectroscopy and magnetism of Mn–Pd alloys. J. Alloy. Compd. 417, 7–12 (2006).

    Article  CAS  Google Scholar 

  49. Guo, G. Y., Murakami, S., Chen, T.-W. & Nagaosa, N. Intrinsic spin Hall effect in platinum: first-principles calculations. Phys. Rev. Lett. 100, 096401 (2008).

    Article  CAS  Google Scholar 

  50. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by ASCENT, one of six centres in JUMP, a Semiconductor Research Corporation (SRC) programme sponsored by DARPA. The authors thank the NSF Center for Energy Efficient Electronics Science (E3S) and TSMC for financial support. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF)/Stanford Nanofabrication Facility (SNF), supported by the National Science Foundation under award ECCS-1542152. The research at the University of Nebraska-Lincoln was supported by the National Science Foundation through EPSCoR RII Track-1 Program under award OIA-2044049. P.Q. acknowledges support from the National Research Council Research Associateship Program. S.E. and M.B.V. acknowledge funding from NSF award DMR-1905909, and assistance from Randy Dumas at Quantum Design with VSM measurements. A.H. and W.-G.W. acknowledge funding from NSF award DMR-1905783. F.X. acknowledges funding from TSMC under the JDP programme with award number SPO135237. Y.-L.H acknowledges the financial support from Center for Semiconductor Technology Research from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by MOE in Taiwan, and the National Science and Technology Council, Taiwan, under grants NSTC 110-2634-F-009-027 and NSTC 111-2112-M-A49-012-MY3. M.M. was supported by JSPS KAKENHI (18KK0414 and 20H02184), Heiwa Nakajima Foundation, PMAC for Science Research Promotion Fund and JST-FOREST (JPMJFR202G). Certain commercial equipment and instruments are identified in this paper to foster understanding. Any mention of commercial products is for information only; it does not imply recommendation or endorsement by the National Institute of Standards and Technology. The authors thank C. H. Diaz, P. Li and J. Jamtgaard for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M. DC conceived, designed and coordinated the research with contributions from M.M., S.-J.L., W.T. and S.X.W. S.X.W supervised the study. M. DC grew the thin films, performed the X-ray diffraction measurements and fabricated the Hall bars and the ST-FMR device, and carried out ST-FMR, SHH and switching measurements with contributions from Y.D., X.L., C.B., F.X. and Y.-L.H. D.-F.S. and E.Y.T. performed DFT calculations. V.D.-H.H., A.H. and W.-G.W. carried out TEM and energy-dispersive X-ray spectroscopy studies. A.V. performed grazing incidence X-ray diffraction measurements. M.B.V., S.E. and C.-M.L performed magnetometry measurements. P.Q., B.K. and J.A.B. performed PNR measurements and modelling. Y.-L.H. performed micromagnetic simulations. M. DC performed data analysis and wrote the manuscript with contributions from D.-F.S, P.Q., A.V. and S.X.W. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Mahendra DC or Shan X. Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Samir Lounis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DC, M., Shao, DF., Hou, V.DH. et al. Observation of anti-damping spin–orbit torques generated by in-plane and out-of-plane spin polarizations in MnPd3. Nat. Mater. 22, 591–598 (2023). https://doi.org/10.1038/s41563-023-01522-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01522-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing