Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of the electrolyte in non-conjugated radical polymers for metal-free aqueous energy storage electrodes


Metal-free aqueous batteries can potentially address the projected shortages of strategic metals and safety issues found in lithium-ion batteries. More specifically, redox-active non-conjugated radical polymers are promising candidates for metal-free aqueous batteries because of the polymers’ high discharge voltage and fast redox kinetics. However, little is known regarding the energy storage mechanism of these polymers in an aqueous environment. The reaction itself is complex and difficult to resolve because of the simultaneous transfer of electrons, ions and water molecules. Here we demonstrate the nature of the redox reaction for poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl acrylamide) by examining aqueous electrolytes of varying chao-/kosmotropic character using electrochemical quartz crystal microbalance with dissipation monitoring at a range of timescales. Surprisingly, the capacity can vary by as much as 1,000% depending on the electrolyte, in which certain ions enable better kinetics, higher capacity and higher cycling stability.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of ions’ chao-/kosmotropic character and their effect on the redox reaction of PTAm.
Fig. 2: Rate capability of PTAm composite electrodes with various aqueous electrolytes.
Fig. 3: Mass profiles and transferred water molecules for PTAm during CV with various aqueous electrolytes.
Fig. 4: Apparent molecular weight (Mw′) of the transferred species with various aqueous electrolytes during CV.
Fig. 5: In situ EIS/EQCM-D of a PTAm electrode.
Fig. 6: Coupled mass–charge responses for a partial sine cycle (0 to +10 mV or one-fourth period of the EIS cycle) for the oxidation of PTAm in various electrolytes during EIS.

Data availability

All data generated and analysed during this study are included in this Article and its Supplementary Information.


  1. Lopez, J., Mackanic, D. G., Cui, Y. & Bao, Z. Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 4, 312–330 (2019).

    Article  CAS  Google Scholar 

  2. Nishide, H. & Oyaizu, K. Toward flexible batteries. Science 319, 737–738 (2008).

    Article  CAS  Google Scholar 

  3. Poizot, P. et al. Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem. Rev. 120, 6490–6557 (2020).

    Article  CAS  Google Scholar 

  4. Nguyen, T. P. et al. Polypeptide organic radical batteries. Nature 593, 61–66 (2021).

    Article  CAS  Google Scholar 

  5. Korley, L. T. J., Epps, T. H. III, Helms, B. A. & Ryan, A. J. Toward polymer upcycling—adding value and tackling circularity. Science 373, 66–69 (2021).

    Article  CAS  Google Scholar 

  6. Rohland, P. et al. Redox-active polymers: the magic key towards energy storage—a polymer design guideline progress in polymer science. Prog. Polym. Sci. 125, 101474 (2022).

    Article  CAS  Google Scholar 

  7. Liang, Y. & Yao, Y. Positioning organic electrode materials in the battery landscape. Joule 2, 1690–1706 (2018).

    Article  CAS  Google Scholar 

  8. Lu, Y. & Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020).

    Article  CAS  Google Scholar 

  9. Easley, A. D., Ma, T. & Lutkenhaus, J. L. Imagining circular beyond lithium-ion batteries. Joule 6, 1743–1749 (2022).

    Article  Google Scholar 

  10. Sato, K. et al. Diffusion-cooperative model for charge transport by redox-active nonconjugated polymers. J. Am. Chem. Soc. 140, 1049–1056 (2018).

    Article  CAS  Google Scholar 

  11. Tan, Y., Casetti, N. C., Boudouris, B. W. & Savoie, B. M. Molecular design features for charge transport in nonconjugated radical polymers. J. Am. Chem. Soc. 143, 11994–12002 (2021).

    Article  CAS  Google Scholar 

  12. Oyaizu, K. & Nishide, H. Radical polymers for organic electronic devices: a radical departure from conjugated polymers? Adv. Mater. 21, 2339–2344 (2009).

    Article  CAS  Google Scholar 

  13. Schon, T. B., McAllister, B. T., Li, P. F. & Seferos, D. S. The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45, 6345–6404 (2016).

    Article  CAS  Google Scholar 

  14. Ma, T., Easley, A. D., Wang, S., Flouda, P. & Lutkenhaus, J. L. Mixed electron-ion-water transfer in macromolecular radicals for metal-free aqueous batteries. Cell Rep. Phys. Sci. 2, 100414 (2021).

    Article  CAS  Google Scholar 

  15. Xie, Y., Zhang, K., Yamauchi, Y., Oyaizu, K. & Jia, Z. Nitroxide radical polymers for emerging plastic energy storage and organic electronics: fundamentals, materials, and applications. Mater. Horiz. 8, 803–829 (2021).

    Article  CAS  Google Scholar 

  16. Janoschka, T. et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527, 78–81 (2015).

    Article  CAS  Google Scholar 

  17. Wilcox, D. A., Agarkar, V., Mukherjee, S. & Boudouris, B. W. Stable radical materials for energy applications. Annu. Rev. Chem. Biomol. Eng. 9, 83–103 (2018).

    Article  Google Scholar 

  18. Joo, Y., Agarkar, V., Sung, S. H., Savoie, B. M. & Boudouris, B. W. A nonconjugated radical polymer glass with high electrical conductivity. Science 359, 1391–1395 (2018).

    Article  CAS  Google Scholar 

  19. Tan, Y. et al. Electronic and spintronic open-shell macromolecules, quo vadis? J. Am. Chem. Soc. 144, 626–647 (2022).

    Article  CAS  Google Scholar 

  20. Goujon, N., Casado, N., Patil, N., Marcilla, R. & Mecerreyes, D. Organic batteries based on just redox polymers. Prog. Polym. Sci. 122, 101449 (2021).

    Article  CAS  Google Scholar 

  21. Hatakeyama-Sato, K., Wakamatsu, H., Katagiri, R., Oyaizu, K. & Nishide, H. An ultrahigh output rechargeable electrode of a hydrophilic radical polymer/nanocarbon hybrid with an exceptionally large current density beyond 1 A cm–2. Adv. Mater. 30, e1800900 (2018).

    Article  Google Scholar 

  22. Burgess, M., Hernandez-Burgos, K., Cheng, K. J., Moore, J. S. & Rodriguez-Lopez, J. Impact of electrolyte composition on the reactivity of a redox active polymer studied through surface interrogation and ion-sensitive scanning electrochemical microscopy. Analyst 141, 3842–3850 (2016).

    Article  CAS  Google Scholar 

  23. Zhang, Y., Zhao, L., Liang, Y., Wang, X. & Yao, Y. Effect of electrolyte anions on the cycle life of a polymer electrode in aqueous batteries. eScience 2, 110–115 (2022).

    Article  Google Scholar 

  24. Nimkar, A. et al. Influences of cations’ solvation on charge storage performance in polyimide anodes for aqueous multivalent ion batteries. ACS Energy Lett. 6, 2638–2644 (2021).

    Article  CAS  Google Scholar 

  25. Wang, S., Li, F., Easley, A. D. & Lutkenhaus, J. L. Real-time insight into the doping mechanism of redox-active organic radical polymers. Nat. Mater. 18, 69–75 (2019).

    Article  CAS  Google Scholar 

  26. Donald, H., Jenkins, B. & Marcus, Y. Viscosity B-coefficients of ions in solution. Chem. Rev. 95, 2695–2724 (1995).

    Article  Google Scholar 

  27. Marcus, Y. Viscosity B-coefficients, structural entropies and heat capacities, and the effects of ions on the structure of water. J. Solut. Chem. 23, 831–848 (1994).

    Article  CAS  Google Scholar 

  28. Hribar, B., Southall, N. T., Vlachy, V. & Dill, K. A. How ions affect the structure of water. J. Am. Chem. Soc. 124, 12302–12311 (2002).

    Article  CAS  Google Scholar 

  29. Tietze, A. A. et al. On the nature of interactions between ionic liquids and small amino-acid-based biomolecules. ChemPhysChem 14, 4044–4064 (2013).

    Article  CAS  Google Scholar 

  30. Bello, L. & Sing, C. E. Mechanisms of diffusive charge transport in redox-active polymer solutions. Macromolecules 53, 7658–7671 (2020).

    Article  CAS  Google Scholar 

  31. Friebe, C. & Schubert, U. S. in Electrochemical Energy Storage: Next Generation Battery Concepts (ed Eichel R. A.) 65–99 (Springer International Publishing, 2019).

  32. Andrieux, C. P. & Saveant, J. Electroneutrality coupling of electron hopping between localized sites with electroinactive counterion displacement. 1. Potential-step plateau currents. J. Phys. Chem. 92, 6761–6767 (1988).

    Article  CAS  Google Scholar 

  33. Grey, C. P. & Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2016).

    Article  CAS  Google Scholar 

  34. Easley, A. D. et al. A practical guide to quartz crystal microbalance with dissipation monitoring of thin polymer films. J. Polym. Sci. 60, 1090–1107 (2021).

  35. Wu, R., Matta, M., Paulsen, B. D. & Rivnay, J. Operando characterization of organic mixed ionic/electronic conducting materials. Chem. Rev. 122, 4493–4551 (2022).

  36. Chen, H. & Ruckenstein, E. Hydrated ions: from individual ions to ion pairs to ion clusters. J. Phys. Chem. B 119, 12671–12676 (2015).

    Article  CAS  Google Scholar 

  37. Flagg, L. Q., Giridharagopal, R., Guo, J. & Ginger, D. S. Anion-dependent doping and charge transport in organic electrochemical transistors. Chem. Mater. 30, 5380–5389 (2018).

    Article  CAS  Google Scholar 

  38. Szumska, A. A. et al. Reversible electrochemical charging of n-type conjugated polymer electrodes in aqueous electrolytes. J. Am. Chem. Soc. 143, 14795–14805 (2021).

    Article  CAS  Google Scholar 

  39. Lé, T. et al. Unveiling the ionic exchange mechanisms in vertically-oriented graphene nanosheet supercapacitor electrodes with electrochemical quartz crystal microbalance and a.c.-electrogravimetry. Electrochem. Commun. 93, 5–9 (2018).

    Article  Google Scholar 

Download references


The experimental work was supported by grant DE-SC0014006 funded by the US Department of Energy, Office of Science (T.M., R.M.T. and J.L.L.). The MD simulation work was supported by grant NSF-DMR-2119672 funded by the National Science Foundation, and the Texas A&M Institute for Data Science Career Initiation Fellowship (C.-H.L. and D.P.T.). The use of the Texas A&M University Soft Matter Facility (RRID:SCR_022482) and contribution of P. Wei are acknowledged.

Author information

Authors and Affiliations



J.L.L. and T.M. conceived the study. T.M. developed the experimental procedures, carried out the experiments and analysed the data. T.M. and J.L.L. discussed the results and wrote the paper. R.M.T. performed the electron paramagnetic resonance and gel permeation chromatography tests. C.-H.L and D.P.T. conducted the MD simulation.

Corresponding author

Correspondence to Jodie L. Lutkenhaus.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Michel Armand and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Figs. 1–45, discussions, references, PTAm synthesis, DFT computational details, MD computational details, kinetic investigations, Jones–Dole B coefficient, EQCM-D details, current collector|polymer film|electrolyte model, equations for anion and cation transfer in the PTAm reaction mechanism, and EIS calculations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Li, CH., Thakur, R.M. et al. The role of the electrolyte in non-conjugated radical polymers for metal-free aqueous energy storage electrodes. Nat. Mater. 22, 495–502 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing