Abstract
Colloidal nanocrystals are successfully used as nanoscale building blocks for creating hierarchical solids with structures that range from amorphous networks to sophisticated periodic superlattices. Recently, it has been observed that these superlattices exhibit collective vibrations, which stem from the correlated motion of the nanocrystals, with their surface-bound ligands acting as molecular linkers. In this Perspective, we describe the work so far on collective vibrations in nanocrystal solids and their as-of-yet untapped potential for phononic applications. With the ability to engineer vibrations in the hypersonic regime through the choice of nanocrystal and linker composition, as well as by controlling their size, shape and chemical interactions, such superstructures offer new opportunities for phononic crystals, acoustic metamaterials and optomechanical systems.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).
Santos, P. J., Gabrys, P. A., Zornberg, L. Z., Lee, M. S. & Macfarlane, R. J. Macroscopic materials assembled from nanoparticle superlattices. Nature 591, 586–591 (2021).
Deng, K., Luo, Z., Tan, L. & Quan, Z. Self-assembly of anisotropic nanoparticles into functional superstructures. Chem. Soc. Rev. 49, 6002–6038 (2020).
Paik, T., Diroll, B. T., Kagan, C. R. & Murray, C. B. Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods. J. Am. Chem. Soc. 137, 6662–6669 (2015).
Weidman, M. C., Nguyen, Q., Smilgies, D.-M. & Tisdale, W. A. Impact of size dispersity, ligand coverage, and ligand length on the structure of PbS nanocrystal superlattices. Chem. Mater. 30, 807–816 (2018).
Kagan, C. R., Lifshitz, E., Sargent, E. H. & Talapin, D. V. Building devices from colloidal quantum dots. Science 353, aac5523 (2016).
Liu, M. et al. Colloidal quantum dot electronics. Nat. Electron. 4, 548–558 (2021).
Kagan, C. R., Bassett, L. C., Murray, C. B. & Thompson, S. M. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 121, 3186–3233 (2020).
García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).
Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).
Cherniukh, I. et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature 593, 535–542 (2021).
Yazdani, N. et al. Nanocrystal superlattices as phonon-engineered solids and acoustic metamaterials. Nat. Commun. 10, 4236 (2019).
Girard, A. et al. Mechanical coupling in gold nanoparticles supermolecules revealed by plasmon-enhanced ultralow frequency raman spectroscopy. Nano Lett. 16, 3843–3849 (2016).
Mork, A. J., Lee, E. M. Y., Dahod, N. S., Willard, A. P. & Tisdale, W. A. Modulation of low-frequency acoustic vibrations in semiconductor nanocrystals through choice of surface ligand. J. Phys. Chem. Lett. 7, 4213–4216 (2016).
Saviot, L., Champagnon, B., Duval, E. & Ekimov, A. I. Size-selective resonant Raman scattering in CdS doped glasses. Phys. Rev. B 57, 341–346 (1998).
Lee, E. M. Y., Mork, A. J., Willard, A. P. & Tisdale, W. A. Including surface ligand effects in continuum elastic models of nanocrystal vibrations. J. Chem. Phys. 147, 044711 (2017).
Girard, A. et al. The mass load effect on the resonant acoustic frequencies of colloidal semiconductor nanoplatelets. Nanoscale 8, 13251–13256 (2016).
Mattarelli, M., Montagna, M., Still, T., Schneider, D. & Fytas, G. Vibration spectroscopy of weakly interacting mesoscopic colloids. Soft Matter 8, 4235–4243 (2012).
Sadat, S. M. & Wang, R. Y. Colloidal nanocrystal superlattices as phononic crystals: plane wave expansion modeling of phonon band structure. RSC Adv. 6, 44578–44587 (2016).
Jansen, M., Yazdani, N. & Wood, V. Phonon-engineered solids constructed from nanocrystals. APL Mater. 7, 081124 (2019).
Diroll, B. T., Kamysbayev, V., Coropceanu, I., Talapin, D. V. & Schaller, R. D. Heat-driven acoustic phonons in lamellar nanoplatelet assemblies. Nanoscale 12, 9661–9668 (2020).
Poyser, C. L. et al. Coherent acoustic phonons in colloidal semiconductor nanocrystal superlattices. ACS Nano 10, 1163–1169 (2016).
Ruello, P. et al. Ultrafast acousto-plasmonics in gold nanoparticle superlattices. Phys. Rev. B 92, 174304 (2015).
Lisiecki, I., Halté, V., Petit, C., Pileni, M. P. & Bigot, J. Y. Vibration dynamics of supra-crystals of cobalt nanocrystals studied with femtosecond laser pulses. Adv. Mater. 20, 4176–4179 (2008).
Lisiecki, I. et al. Coherent longitudinal acoustic phonons in three-dimensional supracrystals of cobalt nanocrystals. Nano Lett. 13, 4914–4919 (2013).
Gomopoulos, N., Cheng, W., Efremov, M., Nealey, P. F. & Fytas, G. Out-of-plane longitudinal elastic modulus of supported polymer thin films. Macromolecules 42, 7164–7167 (2009).
Dhar, L., Rogers, J. A. & Nelson, K. A. Time-resolved vibrational spectroscopy in the impulsive limit. Chem. Rev. 94, 157–193 (1994).
Schnitzenbaumer, K. J. & Dukovic, G. Comparison of phonon damping behavior in quantum dots capped with organic and inorganic ligands. Nano Lett. 18, 3667–3674 (2018).
Kambhampati, P. Hot exciton relaxation dynamics in semiconductor quantum dots: radiationless transitions on the nanoscale. J. Phys. Chem. C 115, 22089–22109 (2011).
Cerullo, G., De Silvestri, S. & Banin, U. Size-dependent dynamics of coherent acoustic phonons in nanocrystal quantum dots. Phys. Rev. B 60, 1928–1932 (1999).
Diroll, B. T., Guo, P. & Schaller, R. D. Heat transfer at hybrid interfaces: interfacial ligand-to-nanocrystal heating monitored with infrared pump, electronic probe spectroscopy. Nano Lett. 18, 7863–7869 (2018).
Wang, Z. et al. Quantization of acoustic modes in dumbbell nanoparticles. Phys. Rev. Lett. 128, 48003 (2022).
Graczykowski, B., Vogel, N., Bley, K., Butt, H.-J. & Fytas, G. Multiband hypersound filtering in two-dimensional colloidal crystals: adhesion, resonances, and periodicity. Nano Lett. 20, 1883–1889 (2020).
Girard, A. et al. Acoustic mode hybridization in a single dimer of gold nanoparticles. Nano Lett. 18, 3800–3806 (2018).
Girard, A. et al. Inelastic light scattering by multiple vibrational modes in individual gold nanodimers. J. Phys. Chem. C 123, 14834–14841 (2019).
Rolle, K., Yaremkevich, D., Scherbakov, A. V., Bayer, M. & Fytas, G. Lifting restrictions on coherence loss when characterizing non-transparent hypersonic phononic crystals. Sci. Rep. 11, 17174 (2021).
Gupalov, S. V. & Merkulov, I. A. Theory of Raman light scattering by nanocrystal acoustic vibrations. Phys. Solid State 41, 1349–1358 (1999).
Takagahara, T. Electron—phonon interactions in semiconductor nanocrystals. J. Lumin. 70, 129–143 (1996).
Noual, A. et al. Optomechanic coupling in Ag polymer nanocomposite films. J. Phys. Chem. C 125, 14854–14864 (2021).
Zanjani, M. B. & Lukes, J. R. Shape- and structure-based phonon bandgap tuning with nanocrystal superlattices. J. Phys. Chem. C 119, 16889–16896 (2015).
Dahod, N. S., France-Lanord, A., Paritmongkol, W., Grossman, J. C. & Tisdale, W. A. Low-frequency Raman spectrum of 2D layered perovskites: local atomistic motion or superlattice modes? J. Chem. Phys. 153, 044710 (2020).
Ong, W.-L., Majumdar, S., Malen, J. A. & McGaughey, A. J. H. Coupling of organic and inorganic vibrational states and their thermal transport in nanocrystal arrays. J. Phys. Chem. C 118, 7288–7295 (2014).
Shao, C. & Shiomi, J. Negligible contribution of inter-dot coherent modes to heat conduction in quantum-dot superlattice. Mater. Today Phys. 22, 100601 (2022).
Guo, P. et al. Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites. Nat. Commun. 9, 2019 (2018).
Dreyer, A. et al. Organically linked iron oxide nanoparticle supercrystals with exceptional isotropic mechanical properties. Nat. Mater. 15, 522–528 (2016).
Wang, Z. et al. Ligand crosslinking boosts thermal transport in colloidal nanocrystal solids. Angew. Chem. Int. Ed. 59, 9556–9563 (2020).
Jansen, M., Juranyi, F., Yarema, O., Seydel, T. & Wood, V. Ligand dynamics in nanocrystal solids studied with quasi-elastic neutron scattering. ACS Nano 15, 20517–20526 (2021).
Martinet, Q. et al. Ligand-dependent nano-mechanical properties of CdSe nanoplatelets: calibrating nanobalances for ligand affinity monitoring. Nanoscale 13, 8639–8647 (2021).
Stahley, J. B. & Zanjani, M. B. Multifarious colloidal structures: new insight into ternary and quadripartite ordered assemblies. Nanoscale 13, 16554–16563 (2021).
Ong, W.-L., Rupich, S. M., Talapin, D. V., McGaughey, A. J. H. & Malen, J. A. Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nat. Mater. 12, 410–415 (2013).
Cheng, W., Wang, J., Jonas, U., Fytas, G. & Stefanou, N. Observation and tuning of hypersonic bandgaps in colloidal crystals. Nat. Mater. 5, 830–836 (2006).
Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).
Phillips, K. R. et al. A colloidoscope of colloid-based porous materials and their uses. Chem. Soc. Rev. 45, 281–322 (2016).
Vasileiadis, T. et al. Progress and perspectives on phononic crystals. J. Appl. Phys. 129, 160901 (2021).
Devkota, T., Yu, K. & Hartland, G. V. Mass loading effects in the acoustic vibrations of gold nanoplates. Nanoscale 11, 16208–16213 (2019).
Volz, S. et al. Nanophononics: state of the art and perspectives. Eur. Phys. J. B 89, 15 (2016).
Cang, Y., Jin, Y., Djafari-Rouhani, B. & Fytas, G. Fundamentals, progress and perspectives on high-frequency phononic crystals. J. Phys. D 55, 193002 (2022).
Wang, Y. F., Wang, Y. Z., Wu, B., Chen, W. & Wang, Y. S. Tunable and active phononic crystals and metamaterials. Appl. Mech. Rev. 72, 040801 (2020).
Alonso-Redondo, E. et al. A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids. Nat. Commun. 6, 8309 (2015).
Aryana, K. & Zanjani, M. B. Diamond family of colloidal supercrystals as phononic metamaterials. J. Appl. Phys. 123, 185103 (2018).
Delsing, P. et al. The 2019 surface acoustic waves roadmap. J. Phys. D 52, 353001 (2019).
Vogele, A. et al. Quantum dot optomechanics in suspended nanophononic strings. Adv. Quantum Technol. 3, 1900102 (2020).
Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).
Chu, Y. & Gröblacher, S. A perspective on hybrid quantum opto- and electromechanical systems. Appl. Phys. Lett. 117, 150503 (2020).
Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).
MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).
Cunha, J. et al. Controlling light, heat, and vibrations in plasmonics and phononics. Adv. Opt. Mater. 8, 2001225 (2020).
Cargnello, M. et al. Substitutional doping in nanocrystal superlattices. Nature 524, 450–453 (2015).
Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995).
Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).
Cherniukh, I. et al. Shape-directed co-assembly of lead halide perovskite nanocubes with dielectric nanodisks into binary nanocrystal superlattices. ACS Nano 15, 16488–16500 (2021).
Mao, N. et al. Resonance-enhanced excitation of interlayer vibrations in atomically thin black phosphorus. Nano Lett. 21, 4809–4815 (2021).
Macfarlane, R. J. From nano to macro: thinking bigger in nanoparticle assembly. Nano Lett. 21, 7432–7434 (2021).
Vogel, N., de Viguerie, L., Jonas, U., Weiss, C. K. & Landfester, K. Wafer-scale fabrication of ordered binary colloidal monolayers with adjustable stoichiometries. Adv. Funct. Mater. 21, 3064–3073 (2011).
Gaulding, E. A. et al. Deposition of wafer-scale single-component and binary nanocrystal superlattice thin films via dip-coating. Adv. Mater. 27, 2846–2851 (2015).
Barad, H. N., Kwon, H., Alarcón-Correa, M. & Fischer, P. Large area patterning of nanoparticles and nanostructures: current status and future prospects. ACS Nano 15, 5861–5875 (2021).
Si, K. J., Chen, Y., Shi, Q. & Cheng, W. Nanoparticle superlattices: the roles of soft ligands. Adv. Sci. 5, 1700179 (2018).
Weidman, M. C., Smilgies, D.-M. & Tisdale, W. A. Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering. Nat. Mater. 15, 775–781 (2016).
Winslow, S. W., Swan, J. W. & Tisdale, W. A. The importance of unbound ligand in nanocrystal superlattice formation. J. Am. Chem. Soc. 142, 9675–9685 (2020).
Winslow, S. W., Smilgies, D. M., Swan, J. W. & Tisdale, W. A. Reversible temperature-induced structural transformations in PbS nanocrystal superlattices. J. Phys. Chem. C 124, 13456–13466 (2020).
Boles, M. A. & Talapin, D. V. Many-body effects in nanocrystal superlattices: departure from sphere packing explains stability of binary phases. J. Am. Chem. Soc. 137, 4494–4502 (2015).
Schulz, F., Lokteva, I., Parak, W. J. & Lehmkühler, F. Recent notable approaches to study self‐assembly of nanoparticles with X‐ray scattering and electron microscopy. Part. Part. Syst. Charact. 38, 2100087 (2021).
Jishkariani, D. et al. Nanocrystal core size and shape substitutional doping and underlying crystalline order in nanocrystal superlattices article. ACS Nano 13, 5712–5719 (2019).
Coropceanu, I. et al. Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals. Science 375, 1422–1426 (2022).
Begley, M. R., Gianola, D. S. & Ray, T. R. Bridging functional nanocomposites to robust macroscale devices. Science 364, eaav4299 (2019).
Acknowledgements
M.J. and V.W. acknowledge support from the Swiss National Science Foundation through project no. 175889, the Quantum Sciences and Technology, National Centre of Competence in Research. W.A.T. was supported by the US Department of Energy, Office of Science, Basic Energy Sciences under award number DE-SC0021025.
Author information
Authors and Affiliations
Contributions
M.J., W.A.T. and V.W. contributed to the discussion of content and revisions of the manuscript. V.W. conceived the idea; M.J. wrote the manuscript and made the illustrations. All authors read and approved the final manuscript contents.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Materials thanks George Fytas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jansen, M., Tisdale, W.A. & Wood, V. Nanocrystal phononics. Nat. Mater. 22, 161–169 (2023). https://doi.org/10.1038/s41563-022-01438-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-022-01438-4