Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tuning colour centres at a twisted hexagonal boron nitride interface

Abstract

The colour centre platform holds promise for quantum technologies, and hexagonal boron nitride has attracted attention due to the high brightness and stability, optically addressable spin states and wide wavelength coverage discovered in its emitters. However, its application is hindered by the typically random defect distribution and complex mesoscopic environment. Here, employing cathodoluminescence, we demonstrate on-demand activation and control of colour centre emission at the twisted interface of two hexagonal boron nitride flakes. Further, we show that colour centre emission brightness can be enhanced by two orders of magnitude by tuning the twist angle. Additionally, by applying an external voltage, nearly 100% brightness modulation is achieved. Our ab initio GW and GW plus Bethe–Salpeter equation calculations suggest that the emission is correlated to nitrogen vacancies and that a twist-induced moiré potential facilitates electron–hole recombination. This mechanism is further exploited to draw nanoscale colour centre patterns using electron beams.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Defect emission from T-hBN interface.
Fig. 2: Angle-dependent brightness and crystal structures of T-hBN.
Fig. 3: Defect type assignment by GW-BSE calculation.
Fig. 4: Optical modulation of the emitter via external voltage.
Fig. 5: Trap-state saturation and electron-beam patterning.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information.

References

  1. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    Article  CAS  Google Scholar 

  2. de Leon, N. P. et al. Materials challenges and opportunities for quantum computing hardware. Science 372, eabb2823 (2021).

    Article  CAS  Google Scholar 

  3. Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    Article  CAS  Google Scholar 

  4. Grosso, G. et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 705 (2017).

  5. Kianinia, M. et al. Robust solid-state quantum system operating at 800 K. ACS Photonics 4, 768–773 (2017).

    Article  CAS  Google Scholar 

  6. Gottscholl, A. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020).

    Article  CAS  Google Scholar 

  7. Chejanovsky, N. et al. Single-spin resonance in a van der Waals embedded paramagnetic defect. Nat. Mater. 20, 1079–1084 (2021).

    Article  CAS  Google Scholar 

  8. Shevitski, B. et al. Blue-light-emitting colour centres in high-quality hexagonal boron nitride. Phys. Rev. B 100, 155419 (2019).

    Article  CAS  Google Scholar 

  9. Museur, L., Feldbach, E. & Kanaev, A. Defect-related photoluminescence of hexagonal boron nitride. Phys. Rev. B 78, 155204 (2008).

    Article  CAS  Google Scholar 

  10. Bourrellier, R. et al. Bright UV single photon emission at point defects in h-BN. Nano Lett. 16, 4317–4321 (2016).

    Article  CAS  Google Scholar 

  11. Vuong, T. Q. P. et al. Phonon-photon mapping in a colour centre in hexagonal boron nitride. Phys. Rev. Lett. 117, 097402 (2016).

  12. Tran, T. T. et al. Robust multicolour single photon emission from point defects in hexagonal boron nitride. ACS Nano 10, 7331–7338 (2016).

    Article  CAS  Google Scholar 

  13. Jungwirth, N. R. & Fuchs, G. D. Optical absorption and emission mechanisms of single defects in hexagonal boron nitride. Phys. Rev. Lett. 119, 057401 (2017).

  14. Hayee, F. et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater. 19, 534–539 (2020).

    Article  CAS  Google Scholar 

  15. Anzai, Y. et al. Broad range thickness identification of hexagonal boron nitride by colours. Appl. Phys. Express 12, 055007 (2019).

  16. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810–816 (2008).

    Article  CAS  Google Scholar 

  17. Sajid, A., Ford, M. J. & Reimers, J. R. Single-photon emitters in hexagonal boron nitride: a review of progress. Rep. Prog. Phys. 83, 044501 (2020).

    Article  CAS  Google Scholar 

  18. Son, J. et al. Atomically precise graphene etch stops for three dimensional integrated systems from two dimensional material heterostructures. Nat. Commun. 9, 3988 (2018).

  19. Proscia, N. V. et al. Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride. Optica 5, 1128–1134 (2018).

  20. Geiselmann, M., Marty, R., García De Abajo, F. J. & Quidant, R. Fast optical modulation of the fluorescence from a single nitrogen-vacancy centre. Nat. Phys. 9, 785–789 (2013).

    Article  CAS  Google Scholar 

  21. Khatri, P., Ramsay, A. J., Malein, R. N. E., Chong, H. M. H. & Luxmoore, I. J. Optical gating of photoluminescence from colour centres in hexagonal boron nitride. Nano Lett. 20, 4256–4263 (2020).

    Article  CAS  Google Scholar 

  22. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  CAS  Google Scholar 

  23. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  Google Scholar 

  24. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  CAS  Google Scholar 

  25. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  CAS  Google Scholar 

  26. Lee, H. Y. et al. Tunable optical properties of thin films controlled by the interface twist angle. Nano Lett. 21, 2832–2839 (2021).

    Article  CAS  Google Scholar 

  27. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  CAS  Google Scholar 

  28. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  CAS  Google Scholar 

  29. Woods, C. R. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).

    Article  CAS  Google Scholar 

  30. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article  CAS  Google Scholar 

  31. Yao, K. et al. Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures. Sci. Adv. 7, abe8691 (2021).

    Article  CAS  Google Scholar 

  32. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    Article  CAS  Google Scholar 

  33. Yang, Y. et al. In situ manipulation of van der Waals heterostructures for twistronics. Sci. Adv. 6, abd3655 (2020).

    Article  CAS  Google Scholar 

  34. Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).

    Article  CAS  Google Scholar 

  35. Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000).

    Article  CAS  Google Scholar 

  36. Katzir, A., Suss, J. T., Zunger, A. & Halperin, A. Point defects in hexagonal boron nitride. I. EPR, thermoluminescence, and thermally-stimulated-current measurements. Phys. Rev. B 11, 2370–2377 (1975).

    Article  CAS  Google Scholar 

  37. Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    Article  CAS  Google Scholar 

  38. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).

    Article  CAS  Google Scholar 

  39. Wu, J. et al. Raman spectroscopy and time-resolved photoluminescence of BN and BxCyNz nanotubes. Nano Lett. 4, 647–650 (2004).

    Article  CAS  Google Scholar 

  40. Du, X. Z., Li, J., Lin, J. Y. & Jiang, H. X. The origin of deep-level impurity transitions in hexagonal boron nitride. Appl. Phys. Lett. 106, 021110 (2015).

    Article  CAS  Google Scholar 

  41. Watanabe, K. & Taniguchi, T. Far-UV photoluminescence microscope for impurity domain in hexagonal-boron-nitride single crystals by high-pressure, high-temperature synthesis. npj 2D Mater. Appl. 3, 40 (2019).

    Article  CAS  Google Scholar 

  42. Hamdi, H., Thiering, G., Bodrog, Z., Ivády, V. & Gali, A. Stone–Wales defects in hexagonal boron nitride as ultraviolet emitters. npj Comput. Mater. 6, 178 (2020).

    Article  CAS  Google Scholar 

  43. Mackoit-Sinkevičienė, M., Maciaszek, M., Van de Walle, C. G. & Alkauskas, A. Carbon dimer defect as a source of the 4.1 eV luminescence in hexagonal boron nitride. Appl. Phys. Lett. 115, 212101 (2019).

    Article  CAS  Google Scholar 

  44. Refaely-Abramson, S., Qiu, D. Y., Louie, S. G. & Neaton, J. B. Defect-induced modification of low-lying excitons and valley selectivity in monolayer transition metal dichalcogenides. Phys. Rev. Lett. 121, 167402 (2018).

    Article  CAS  Google Scholar 

  45. Pankove, J. I. & Kiewit, D. A. Optical Processes in Semiconductors (Dover Publications, 2012); https://doi.org/10.1149/1.2404256

  46. Moore, A. W. & Singer, L. S. Electron spin resonance in carbon-doped boron nitride. J. Phys. Chem. Solids 33, 343–356 (1972).

    Article  CAS  Google Scholar 

  47. Rousseau, A. et al. Determination of the optical bandgap of the Bernal and rhombohedral boron nitride polymorphs. Phys. Rev. Mater. 5, 064602 (2021).

    Article  CAS  Google Scholar 

  48. Pelini, T. et al. Shallow and deep levels in carbon-doped hexagonal boron nitride crystals. Phys. Rev. Mater. 3, 094001 (2019).

    Article  CAS  Google Scholar 

  49. Tawfik, S. A. et al. First-principles investigation of quantum emission from hBN defects. Nanoscale 9, 13575–13582 (2017).

    Article  CAS  Google Scholar 

  50. Museur, L. & Kanaev, A. Photoluminescence properties of pyrolytic boron nitride. J. Mater. Sci. 44, 2560–2565 (2009).

    Article  CAS  Google Scholar 

  51. Sajid, A., Reimers, J. R. & Ford, M. J. Defect states in hexagonal boron nitride: assignments of observed properties and prediction of properties relevant to quantum computation. Phys. Rev. B 97, 064101 (2018).

    Article  CAS  Google Scholar 

  52. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  53. Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N. & Van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).

  54. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  55. Tiago, M. L., Ismail-Beigi, S. & Louie, S. G. Effect of semicore orbitals on the electronic band gaps of Si, Ge, and GaAs within the GW approximation. Phys. Rev. B 69, 125212 (2004).

    Article  CAS  Google Scholar 

  56. Deslippe, J. et al. BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 183, 1269–1289 (2012).

    Article  CAS  Google Scholar 

  57. Hovington, P., Drouin, D. & Gauvin, R. CASINO: a new Monte Carlo code in C language for electron beam interaction—part I: description of the program. Scanning 19, 1–14 (1997).

  58. Kanaya, K. & Okayama, S. Penetration and energy-loss theory of electrons in solid targets. J. Phys. D 5, 43–58 (1972).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported primarily by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05-CH11231, within the sp2-Bonded Materials Program (KC2207), which provided for the development of the project concept and theoretical calculations. CL and HRTEM measurements were provided by The Molecular Foundry, supported under the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05-CH11231. Additional support was provided by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05-CH11231, within the van der Waals Bonded Materials Program (KCWF16), which provided for sample fabrication, and within the Theory of Materials Program, which provided theoretical methods and analyses. Preparation of the TEM grid suspended samples was provided by the National Science Foundation under grant DMR-1807322. C.S. gratefully acknowledges the financial support of a Kavli Energy NanoScience Institute Heising-Simons Postdoctoral Fellowship. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan (grant no. JPMXP0112101001) and the Japan Society for the Promotion of Science KAKENHI (grant nos 19H05790 and JP20H00354). W.Z. and F.Z. acknowledge the support from the Guangdong Innovation Research Team Project (no. 2017ZT07C062), Guangdong Provincial Key-Lab programme (no. 2019B030301001), Shenzhen Municipal Key-Lab programme (ZDSYS20190902092905285) and Centre for Computational Science and Engineering at Southern University of Science and Technology. J.-H.P. and J.K. acknowledge the support from the US Army Research Office Multidisciplinary University Research Initiative under grant no. W911NF-18-1-0431 and the US Army Research Office through the Institute for Soldier Nanotechnologies at MIT, under cooperative agreement no. W911NF-18-2-0048.

Author information

Authors and Affiliations

Authors

Contributions

C.S., A.Z. and S.A. conceived the experiments. A.Z. supervised the whole project. S.G.L. supervised the theoretical studies. C.S. and S.A. designed and performed the regular, in situ and cryo-CL and HRTEM experiments. F.Z. performed the calculations and, with J.J. and S.G.L., performed the theory analyses. S.K. prepared the samples and fabricated the devices. C.D. and A.U. aided in sample preparations. J.-H.P. and J.K. prepared the monolayer hBN samples. K.W. and T.T. provided the bulk hBN samples. C.S. wrote the paper. All the authors were involved in the paper revisions.

Corresponding authors

Correspondence to Steven G. Louie, Shaul Aloni or Alex Zettl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Sajid Ali and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Table 1 and Discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, C., Zhang, F., Kahn, S. et al. Tuning colour centres at a twisted hexagonal boron nitride interface. Nat. Mater. 21, 896–902 (2022). https://doi.org/10.1038/s41563-022-01303-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01303-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing