Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Imaging gate-tunable Tomonaga–Luttinger liquids in 1H-MoSe2 mirror twin boundaries

Abstract

One-dimensional electron systems exhibit fundamentally different properties than higher-dimensional systems. For example, electron–electron interactions in one-dimensional electron systems have been predicted to induce Tomonaga–Luttinger liquid behaviour. Naturally occurring grain boundaries in single-layer transition metal dichalcogenides exhibit one-dimensional conducting channels that have been proposed to host Tomonaga–Luttinger liquids, but charge density wave physics has also been suggested to explain their behaviour. Clear identification of the electronic ground state of this system has been hampered by an inability to electrostatically gate such boundaries and tune their charge carrier concentration. Here we present a scanning tunnelling microscopy and spectroscopy study of gate-tunable mirror twin boundaries in single-layer 1H-MoSe2 devices. Gating enables scanning tunnelling microscopy and spectroscopy for different mirror twin boundary electron densities, thus allowing precise characterization of electron–electron interaction effects. Visualization of the resulting mirror twin boundary electronic structure allows unambiguous identification of collective density wave excitations having two velocities, in quantitative agreement with the spin–charge separation predicted by finite-length Tomonaga–Luttinger liquid theory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: STM characterization of a SL MoSe2/graphene/hBN/SiO2/Si device at temperature T = 5 K.
Fig. 2: Gate-dependent electronic structure of the MTB.
Fig. 3: Electronic LDOS maps of states at gap edges for Vg = –60 V and Vg = 60 V.
Fig. 4: Experimental (Exp.) STS along MTB at Vg = 0 V compared with theoretical LDOS based on TLL model.
Fig. 5: Gap size statistics and MTB TLL parameter obtained in two different ways.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The codes used in this study are available from the corresponding authors upon reasonable request.

References

  1. Kim, B. J. et al. Distinct spinon and holon dispersions in photoemission spectral functions from one-dimensional SrCuO2. Nat. Phys. 2, 397–401 (2006).

    Article  CAS  Google Scholar 

  2. Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).

    Article  Google Scholar 

  3. Bockrath, M. et al. Single-electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 (1997).

    Article  CAS  Google Scholar 

  4. Tomonaga, S.-i Remarks on Bloch’s method of sound waves applied to many-fermion problems. Prog. Theor. Phys. 5, 544–569 (1950).

    Article  Google Scholar 

  5. Luttinger, J. M. An exactly soluble model of a many‐fermion system. J. Math. Phys. 4, 1154–1162 (1963).

    Article  CAS  Google Scholar 

  6. Mattis, D. C. & Lieb, E. H. Exact solution of a many‐fermion system and its associated boson field. J. Math. Phys. 6, 304–312 (1965).

    Article  CAS  Google Scholar 

  7. Haldane, F. D. M. ‘Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properites of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C 14, 2585–2609 (1981).

    Article  Google Scholar 

  8. Gogolin, A. O., Nersesyan, A. A. & Tsvelik, A. M. Bosonization and Strongly Correlated Systems (Cambridge Univ. Press, 1998).

  9. Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, 2004).

  10. Matveev, K. A., Furusaki, A. & Glazman, L. I. Bosonization of strongly interacting one-dimensional electrons. Phys. Rev. B 76, 155440 (2007).

    Article  Google Scholar 

  11. Ilan, R., Cayssol, J., Bardarson, J. H. & Moore, J. E. Nonequilibrium transport through a gate-controlled barrier on the quantum spin Hall edge. Phys. Rev. Lett. 109, 216602 (2012).

    Article  Google Scholar 

  12. Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999).

    Article  CAS  Google Scholar 

  13. Yao, Z., Postma, H. W. C., Balents, L. & Dekker, C. Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999).

    Article  CAS  Google Scholar 

  14. Ishii, H. et al. Direct observation of Tomonaga–Luttinger-liquid state in carbon nanotubes at low temperatures. Nature 426, 540–544 (2003).

    Article  CAS  Google Scholar 

  15. Lee, J. et al. Real space imaging of one-dimensional standing waves: direct evidence for a Luttinger liquid. Phys. Rev. Lett. 93, 166403 (2004).

    Article  Google Scholar 

  16. Shi, Z. et al. Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes. Nat. Photon. 9, 515–519 (2015).

    Article  CAS  Google Scholar 

  17. Chang, A. M. Chiral Luttinger liquids at the fractional quantum Hall edge. Rev. Mod. Phys. 75, 1449–1505 (2003).

    Article  CAS  Google Scholar 

  18. Stühler, R. et al. Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator. Nat. Phys. 16, 47–51 (2019).

    Article  Google Scholar 

  19. Auslaender, O. M. et al. Tunneling spectroscopy of the elementary excitations in a one-dimensional wire. Science 295, 825–828 (2002).

    Article  CAS  Google Scholar 

  20. Auslaender, O. M. et al. Spin-charge separation and localization in one dimension. Science 308, 88–92 (2005).

    Article  CAS  Google Scholar 

  21. Jompol, Y. et al. Probing spin-charge separation in a Tomonaga-Luttinger liquid. Science 325, 597–601 (2009).

    Article  CAS  Google Scholar 

  22. Auslaender, O. M. et al. Experimental evidence for resonant tunneling in a Luttinger liquid. Phys. Rev. Lett. 84, 1764–1767 (2000).

    Article  CAS  Google Scholar 

  23. Batzill, M. Mirror twin grain boundaries in molybdenum dichalcogenides. J. Phys. Condens. Matter 30, 493001 (2018).

    Article  Google Scholar 

  24. Barja, S. et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 12, 751–757 (2016).

    Article  CAS  Google Scholar 

  25. Ma, Y. et al. Metallic twin grain boundaries embedded in MoSe2 monolayers grown by molecular beam epitaxy. ACS Nano 11, 5130–5139 (2017).

    Article  CAS  Google Scholar 

  26. Ma, Y. et al. Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary. Nat. Commun. 8, 14231 (2017).

    Article  CAS  Google Scholar 

  27. Jolie, W. et al. Tomonaga-Luttinger liquid in a box: electrons confined within MoS2 mirror-twin boundaries. Phys. Rev. X 9, 011055 (2019).

    CAS  Google Scholar 

  28. Wang, L. et al. Direct observation of one-dimensional Peierls-type charge density wave in twin boundaries of monolayer MoTe2. ACS Nano 14, 8299–8306 (2020).

    Article  CAS  Google Scholar 

  29. Xia, Y. et al. Charge density modulation and the Luttinger liquid state in MoSe2 mirror twin boundaries. ACS Nano 14, 10716–10722 (2020).

    Article  CAS  Google Scholar 

  30. Yang, X., et al. Manipulating Hubbard-type Coulomb blockade effect of metallic wires embedded in an insulator. Preprint at https://arxiv.org/abs/2104.08577 (2021).

  31. Fabrizio, M. & Gogolin, A. O. Interacting one-dimensional electron gas with open boundaries. Phys. Rev. B 51, 17827–17841 (1995).

    Article  CAS  Google Scholar 

  32. Eggert, S., Johannesson, H. & Mattsson, A. Boundary effects on spectral properties of interacting electrons in one dimension. Phys. Rev. Lett. 76, 1505–1508 (1996).

    Article  CAS  Google Scholar 

  33. Mattsson, A. E., Eggert, S. & Johannesson, H. Properties of a Luttinger liquid with boundaries at finite temperature and size. Phys. Rev. B 56, 15615–15628 (1997).

    Article  CAS  Google Scholar 

  34. Kane, C., Balents, L. & Fisher, M. P. A. Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett. 79, 5086–5089 (1997).

    Article  CAS  Google Scholar 

  35. Anfuso, F. & Eggert, S. Luttinger liquid in a finite one-dimensional wire with box-like boundary conditions. Phys. Rev. B 68, 241301 (2003).

    Article  Google Scholar 

  36. Kakashvili, P., Johannesson, H. & Eggert, S. Local spectral weight of a Luttinger liquid: effects from edges and impurities. Phys. Rev. B 74, 085114 (2006).

    Article  Google Scholar 

  37. Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013).

    Article  CAS  Google Scholar 

  38. Brar, V. W. et al. Gate-controlled ionization and screening of cobalt adatoms on a graphene surface. Nat. Phys. 7, 43–47 (2011).

    Article  CAS  Google Scholar 

  39. Mallet, P., Sacks, W., Roditchev, D., Défourneau, D. & Klein, J. Spatial and energy variation of the local density of states in the charge density wave phase of 2H–NbSe2. J. Vac. Sci. Technol. B 14, 1070–1074 (1996).

    Article  CAS  Google Scholar 

  40. Miranda, E. Introduction to bosonization. Braz. J. Phys. 33, 3–35 (2003).

    Article  Google Scholar 

  41. Lee, D. H. & Toner, J. Kondo effect in a Luttinger liquid. Phys. Rev. Lett. 69, 3378–3381 (1992).

    Article  CAS  Google Scholar 

  42. Furusaki, A. & Nagaosa, N. Kondo effect in a Tomonaga-Luttinger liquid. Phys. Rev. Lett. 72, 892–895 (1994).

    Article  CAS  Google Scholar 

  43. Hikihara, T., Furusaki, A. & Matveev, K. A. Renormalization of impurity scattering in one-dimensional interacting electron systems in magnetic field. Phys. Rev. B 72, 035301 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported as part of the Center for Novel Pathways to Quantum Coherence in Materials, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences (material growth, STM spectroscopy, theoretical simulations). Support was also provided by the National Science Foundation through grant DMR-1807233 (device design). S.W. and G.Z. acknowledge support by Guangdong Basic and Applied Basic Research Foundation through grant no. 2019A1515110898 (epitaxial graphene growth). Z.Q.Q. acknowledges support by the National Research Foundation of Korea through grant no. 2015M3D1A1070467 (MBE instrumentation development) and no. 2015R1A5A1009962 (MBE growth characterization). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the Ministry of Education, Culture, Sports, Science and Technology, Japan, grant no. JPMXP0112101001 (hBN growth) and the Japan Society for the Promotion of Science KAKENHI grant no. 19H05790 (hBN characterization) and no. JP20H00354 (development of new hBN growth tools).

Author information

Authors and Affiliations

Authors

Contributions

T.Z., W.R., F.W. and M.F.C. initiated and conceived this project. W.R., T.Z. and C.Z. carried out STM/STS measurements under the supervision of M.F.C.; Y.-Q.W. and W.R. performed theoretical analysis and numerical calculation under the supervision of J.E.M.; T.Z. and T.W. performed MBE growth under the supervision of Z.Q.Q.; H.-Z.T. and F.L. performed device fabrication under the supervision of M.F.C. and A.Z.; S.W. prepared epitaxial graphene under the supervision of G.Z.; and K.W. and T.T. synthesized hBN crystals. T.Z., W.R., J.B.N., A.W.-B., F.W. and M.F.C. analysed the experimental data. T.Z., W.R., Y.-Q.W. and M.F.C. wrote the manuscript with help from all the authors. All authors contributed to the scientific discussion.

Corresponding authors

Correspondence to Wei Ruan, Feng Wang, Joel E. Moore or Michael F. Crommie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Discussion.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 1

Full-length, unprocessed gels or blots.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 3

Full-length, unprocessed gels or blots.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 4

Full-length, unprocessed gels or blots.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Ruan, W., Wang, YQ. et al. Imaging gate-tunable Tomonaga–Luttinger liquids in 1H-MoSe2 mirror twin boundaries. Nat. Mater. 21, 748–753 (2022). https://doi.org/10.1038/s41563-022-01277-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01277-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing