Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells

Abstract

The hydroxide exchange membrane fuel cell (HEMFC) is a promising energy conversion technology but is limited by the need for platinum group metal (PGM) electrocatalysts, especially for the hydrogen oxidation reaction (HOR). Here we report a Ni-based HOR catalyst that exhibits an electrochemical surface area-normalized exchange current density of 70 μA cm2, the highest among PGM-free catalysts. The catalyst comprises Ni nanoparticles embedded in a nitrogen-doped carbon support. According to X-ray and ultraviolet photoelectron spectroscopy as well as H2 chemisorption data, the electronic interaction between the Ni nanoparticles and the support leads to balanced hydrogen and hydroxide binding energies, which are the likely origin of the catalyst’s high activity. PGM-free HEMFCs employing this Ni-based HOR catalyst give a peak power density of 488 mW cm2, up to 6.4 times higher than previous best-performing analogous HEMFCs. This work demonstrates the feasibility of efficient PGM-free HEMFCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and TEM images of the Ni catalysts.
Fig. 2: Electrochemical HOR.
Fig. 3: Mechanistic studies.
Fig. 4: Correlation of measured HOR activities with HBEs and OHBEs.
Fig. 5: Hydrogen fuel cell performance using Ni-H2-NH3 as anode.

Similar content being viewed by others

Data availability

All data are available in the main text and the Supplementary Information, and source data are deposited in Zenodo repository (https://doi.org/10.5281/zenodo.5885289)51. Source data are provided with this paper.

References

  1. Setzler, B. P., Zhuang, Z., Wittkopf, J. A. & Yan, Y. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells. Nat. Nanotechnol. 11, 1020–1025 (2016).

    Article  CAS  Google Scholar 

  2. Thompson, S. T., Peterson, D., Ho, D. & Papageorgopoulos, D. Perspective—the next decade of AEMFCs: near-term targets to accelerate applied R&D. J. Electrochem. Soc. 167, 084514 (2020).

    Article  CAS  Google Scholar 

  3. Wang, Y. et al. Synergistic Mn–Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells. Nat. Commun. 10, 1506 (2019).

    Article  CAS  Google Scholar 

  4. Santori, P. G. et al. High performance FeNC and Mn-oxide/FeNC layers for AEMFC cathodes. J. Electrochem. Soc. 167, 134505 (2020).

    Article  CAS  Google Scholar 

  5. Peng, X. et al. High-performing PGM-free AEMFC cathodes from carbon-supported cobalt ferrite nanoparticles. Catalysts 9, 264 (2019).

    Article  CAS  Google Scholar 

  6. Wang, J. et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat. Energy 4, 392–398 (2019).

    Article  CAS  Google Scholar 

  7. Firouzjaie, H. A. & Mustain, W. E. Catalytic advantages, challenges, and priorities in alkaline membrane fuel cells. ACS Catal. 10, 225–234 (2019).

    Article  CAS  Google Scholar 

  8. Gu, S. et al. An efficient Ag–ionomer interface for hydroxide exchange membrane fuel cells. Chem. Commun. 49, 131–133 (2013).

    Article  CAS  Google Scholar 

  9. Zhuang, Z. et al. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nat. Commun. 7, 10141 (2016).

    Article  CAS  Google Scholar 

  10. Yang, Y. et al. Enhanced electrocatalytic hydrogen oxidation on Ni/NiO/C derived from a nickel-based metal–organic framework. Angew. Chem. Int. Ed. 58, 10644–10649 (2019).

    Article  CAS  Google Scholar 

  11. Yang, F. et al. Boosting hydrogen oxidation activity of Ni in alkaline media through oxygen-vacancy-rich CeO2/Ni heterostructures. Angew. Chem. Int. Ed. 58, 14179–14183 (2019).

    Article  CAS  Google Scholar 

  12. Davydova, E., Zaffran, J., Dhaka, K., Toroker, M. & Dekel, D. Hydrogen oxidation on Ni-based electrocatalysts: the effect of metal doping. Catalysts 8, 454 (2018).

    Article  CAS  Google Scholar 

  13. Oshchepkov, A. G. et al. Nanostructured nickel nanoparticles supported on vulcan carbon as a highly active catalyst for the hydrogen oxidation reaction in alkaline media. J. Power Sources 402, 447–452 (2018).

    Article  CAS  Google Scholar 

  14. Ni, W. et al. Efficient hydrogen oxidation catalyzed by strain-engineered nickel nanoparticles. Angew. Chem. Int. Ed. 59, 10797–10801 (2020).

    Article  CAS  Google Scholar 

  15. Ni, W. et al. Ni3N as an active hydrogen oxidation reaction catalyst in alkaline medium. Angew. Chem. Int. Ed. 58, 7445–7449 (2019).

    Article  CAS  Google Scholar 

  16. Durst, J. et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 7, 2255–2260 (2014).

    Article  CAS  Google Scholar 

  17. Zheng, J., Sheng, W., Zhuang, Z., Xu, B. & Yan, Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2, e1501602 (2016).

    Article  CAS  Google Scholar 

  18. Rebollar, L. et al. “Beyond adsorption” descriptors in hydrogen electrocatalysis. ACS Catal. 10, 14747–14762 (2020).

    Article  CAS  Google Scholar 

  19. Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 334, 1256–1260 (2011).

    Article  CAS  Google Scholar 

  20. Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012).

    Article  CAS  Google Scholar 

  21. Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013).

    Article  CAS  Google Scholar 

  22. Sheng, W. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).

    Article  CAS  Google Scholar 

  23. Zheng, J., Nash, J., Xu, B. & Yan, Y. Perspective—towards establishing apparent hydrogen binding energy as the descriptor for hydrogen oxidation/evolution reactions. J. Electrochem. Soc. 165, H27–H29 (2018).

    Article  CAS  Google Scholar 

  24. Giles, S. A. et al. Recent advances in understanding the pH dependence of the hydrogen oxidation and evolution reactions. J. Catal. 367, 328–331 (2018).

    Article  CAS  Google Scholar 

  25. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    Article  CAS  Google Scholar 

  26. Ryu, J. & Surendranath, Y. Tracking electrical fields at the Pt/H2O interface during hydrogen catalysis. J. Am. Chem. Soc. 141, 15524–15531 (2019).

    Article  CAS  Google Scholar 

  27. Rebollar, L., Intikhab, S., Snyder, J. D. & Tang, M. H. Kinetic isotope effects quantify pH-sensitive water dynamics at the Pt electrode interface. J. Phys. Chem. Lett. 11, 2308–2313 (2020).

    Article  CAS  Google Scholar 

  28. Dekel, D. R. Unraveling mysteries of hydrogen electrooxidation in anion exchange membrane fuel cells. Curr. Opin. Electrochem. 12, 182–188 (2018).

    Article  CAS  Google Scholar 

  29. Tian, X., Zhao, P. & Sheng, W. Hydrogen evolution and oxidation: mechanistic studies and material advances. Adv. Mater. 31, e1808066 (2019).

    Article  CAS  Google Scholar 

  30. Lu, S. & Zhuang, Z. Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 139, 5156–5163 (2017).

    Article  CAS  Google Scholar 

  31. McCrum, I. T. & Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 5, 891–899 (2020).

    Article  CAS  Google Scholar 

  32. Feng, Z. et al. Role of hydroxyl species in hydrogen oxidation reaction: a DFT study. J. Phys. Chem. C. 123, 23931–23939 (2019).

    Article  CAS  Google Scholar 

  33. Dahal, A. & Batzill, M. Graphene–nickel interfaces: a review. Nanoscale 6, 2548–2562 (2014).

    Article  CAS  Google Scholar 

  34. Luo, M. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 574, 81–85 (2019).

    Article  CAS  Google Scholar 

  35. Kambe, T. et al. Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator. J. Am. Chem. Soc. 136, 14357–14360 (2014).

    Article  CAS  Google Scholar 

  36. Dou, J. H. et al. Signature of metallic behavior in the metal–organic frameworks M3(hexaiminobenzene)2 (M = Ni, Cu). J. Am. Chem. Soc. 139, 13608–13611 (2017).

    Article  CAS  Google Scholar 

  37. Hammer, B. & Nørskov, J. K. Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. 45, 71–129 (2000).

    CAS  Google Scholar 

  38. Doyle, R. L., Godwin, I. J., Brandon, M. P. & Lyons, M. E. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. Phys. Chem. Chem. Phys. 15, 13737–13783 (2013).

    Article  CAS  Google Scholar 

  39. Qian, X. M. et al. A pulsed field ionization photoelectron–photoion coincidence study of the dissociative photoionization process D2O+hν→OD++D+e−. Chem. Phys. Lett. 353, 19–26 (2002).

    Article  CAS  Google Scholar 

  40. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    Article  CAS  Google Scholar 

  41. Deng, S. et al. Insight into the hydrogen oxidation electrocatalytic performance enhancement on Ni via oxophilic regulation of MoO2. J. Energy Chem. 54, 202–207 (2021).

    Article  Google Scholar 

  42. Gao, L. et al. A nickel nanocatalyst within a h-BN shell for enhanced hydrogen oxidation reactions. Chem. Sci. 8, 5728–5734 (2017).

    Article  CAS  Google Scholar 

  43. Yang, F. et al. Enhanced HOR catalytic activity of PGM-free catalysts in alkaline media: the electronic effect induced by different heteroatom doped carbon supports. J. Mater. Chem. A 7, 10936–10941 (2019).

    Article  CAS  Google Scholar 

  44. Giles, S. A., Yan, Y. & Vlachos, D. G. Effect of substitutionally doped graphene on the activity of metal nanoparticle catalysts for the hydrogen oxidation reaction. ACS Catal. 9, 1129–1139 (2018).

    Article  CAS  Google Scholar 

  45. Yang, Y. et al. High-loading composition-tolerant Co–Mn spinel oxides with performance beyond 1 W/cm2 in alkaline polymer electrolyte fuel cells. ACS Energy Lett. 4, 1251–1257 (2019).

    Article  CAS  Google Scholar 

  46. Wang, T. et al. Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution. Energy Environ. Sci. 12, 3522–3529 (2019).

    Article  CAS  Google Scholar 

  47. Song, F. et al. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat. Commun. 9, 4531 (2018).

    Article  CAS  Google Scholar 

  48. Miller, H. A. et al. A Pd/C-CeO2 anode catalyst for high-performance platinum-free anion exchange membrane fuel cells. Angew. Chem. Int. Ed. 55, 6004–6007 (2016).

    Article  CAS  Google Scholar 

  49. Wade, C. R. & Dinca, M. Investigation of the synthesis, activation, and isosteric heats of CO2 adsorption of the isostructural series of metal–organic frameworks M3(BTC)2 (M = Cr, Fe, Ni, Cu, Mo, Ru). Dalton Trans. 41, 7931–7938 (2012).

    Article  CAS  Google Scholar 

  50. Sheng, W. C., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529–B1536 (2010).

    Article  CAS  Google Scholar 

  51. Ni, W. et al. An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells. Source data at https://doi.org/10.5281/zenodo.5885289 (2022).

Download references

Acknowledgements

W.N. and X.H. acknowledge the financial support of EPFL; T.W. and Y.Y. acknowledge the financial support of the US Department of Energy, Advanced Research Projects Agency-Energy (award nos. DE-AR0000771, DE-AR0000805, DE-AR0001034 and DE-AR0001149); F.H. and J.S.L. acknowledge the financial support of the European Research Council under the European Union’s Horizon 2020 research and innovation program (starting grant CATACOAT, no. 758653) as well as the Swiss National Science Foundation (grant no. PYAPP2_15428); S.L. acknowledges the Marie Skłodowska-Curie Fellowship (grant no. 838367). We thank P. A. Schouwink (EPFL) for assistance with XRD measurements.

Author information

Authors and Affiliations

Authors

Contributions

W.N. designed and synthesized all the catalysts, performed electrochemical measurements and characterizations; T.W. assembled the MEAs and performed the fuel cell measurements; F.H. performed the chemisorption experiments and analysed the data with J.S.L.; A.K. performed the UPS measurements and analysed the data with A.S.; S.L. and W.N. performed the in situ Raman experiments; L.Y. performed the four-probe conductivity measurements; W.N. and X.H. wrote the paper, with input from all the other co-authors. Y.Y. and X.H. directed the research.

Corresponding authors

Correspondence to Yushan Yan or Xile Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Frédéric Jaouen and Sanjeev Mukerjee for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Figs. 1–32 and Tables 1–7.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, W., Wang, T., Héroguel, F. et al. An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells. Nat. Mater. 21, 804–810 (2022). https://doi.org/10.1038/s41563-022-01221-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01221-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing