Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disentangling water, ion and polymer dynamics in an anion exchange membrane

Abstract

Semipermeable polymeric anion exchange membranes are essential for separation, filtration and energy conversion technologies including reverse electrodialysis systems that produce energy from salinity gradients, fuel cells to generate electrical power from the electrochemical reaction between hydrogen and oxygen, and water electrolyser systems that provide H2 fuel. Anion exchange membrane fuel cells and anion exchange membrane water electrolysers rely on the membrane to transport OH ions between the cathode and anode in a process that involves cooperative interactions with H2O molecules and polymer dynamics. Understanding and controlling the interactions between the relaxation and diffusional processes pose a main scientific and critical membrane design challenge. Here quasi-elastic neutron scattering is applied over a wide range of timescales (100–103 ps) to disentangle the water, polymer relaxation and OH diffusional dynamics in commercially available anion exchange membranes (Fumatech FAD-55) designed for selective anion transport across different technology platforms, using the concept of serial decoupling of relaxation and diffusional processes to analyse the data. Preliminary data are also reported for a laboratory-prepared anion exchange membrane especially designed for fuel cell applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of AEM-FC and the FAD-55 AEM in relation to measurement protocol.
Fig. 2: EFWS intensity and m.s.d. data for FAD-55 membrane.
Fig. 3: Analysis of QENS associated with different dynamical processes; data for FAD-55 membrane.
Fig. 4: Intermediate scattering function to investigate relaxation dynamics as a function of their timescale; data for FAD-55 membrane.
Fig. 5: From dynamics parameters to AEM performance; data for FAD-55 membrane.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Information. Additional data related to this paper may be requested from the authors. Source data are provided with this paper.

References

  1. Zlotorowicz, A., Strand, R. V., Burheim, O. S., Wilhelmsen, Ø. & Kjelstrup, S. The permselectivity and water transference number of ion exchange membranes in reverse electrodialysis. J. Membr. Sci. 523, 402–408 (2017).

    Article  CAS  Google Scholar 

  2. Gottesfeld, S. et al. Anion exchange membrane fuel cells: current status and remaining challenges. J. Power Sources 375, 170–184 (2018).

    Article  CAS  Google Scholar 

  3. Varcoe, J. R. et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 7, 3135–3191 (2014).

    Article  CAS  Google Scholar 

  4. Kumar, S. S. & Himabindu, V. Hydrogen production by PEM water electrolysis—a review. Mater. Sci. Energy Technol. 2, 442–454 (2019).

    Google Scholar 

  5. Henkensmeier, D. et al. Overview: state-of-the art commercial membranes for anion exchange membrane water electrolysis. J. Electrochem. Energy Convers. Stor. 18, 024001 (2021).

    Article  CAS  Google Scholar 

  6. Hren, M., Božič, M., Fakin, D., Kleinschek, K. S. & Gorgieva, S. Alkaline membrane fuel cells: anion exchange membranes and fuels. Sustain. Energy Fuel 5, 604–637 (2021).

    Article  CAS  Google Scholar 

  7. FuelCellStore. Fumasep FAD-55 https://www.fuelcellstore.com/fuel-cell-components/membranes (2020).

  8. Barnes, A. M., Liu, B. & Buratto, S. K. Humidity-dependent surface structure and hydroxide conductance of a model quaternary ammonium anion exchange membrane. Langmuir 35, 14188–14193 (2019).

    Article  CAS  Google Scholar 

  9. Ran, J. et al. Anion exchange membranes (AEMs) based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and its derivatives. Polym. Chem. 6, 5809–5826 (2015).

    Article  CAS  Google Scholar 

  10. Pusara, S., Srebnik, S. & Dekel, D. R. Molecular simulation of quaternary ammonium solutions at low hydration levels. J. Phys. Chem. C 122, 11204–11213 (2018).

    Article  CAS  Google Scholar 

  11. Ramaswamy, N. & Mukerjee, S. Alkaline anion-exchange membrane fuel cells: challenges in electrocatalysis and interfacial charge transfer. Chem. Rev. 119, 11945–11979 (2019).

    Article  CAS  Google Scholar 

  12. Springer, T. E., Zawodzinski, T. A. & Gottesfeld, S. Polymer electrolyte fuel cell model. J. Electrochem. Soc. 138, 2334–2342 (1919).

    Article  Google Scholar 

  13. Marx, D., Chandra, A. & Tuckerman, M. E. Aqueous basic solutions: hydroxide solvation, structural diffusion, and comparison to the hydrated proton. Chem. Rev. 110, 2174–2216 (2010).

    Article  CAS  Google Scholar 

  14. Tuckerman, M. E., Marx, D. & Parrinello, M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417, 925–929 (2002).

    Article  CAS  Google Scholar 

  15. Dubey, V., Maiti, A. & Daschakraborty, S. Predicting the solvation structure and vehicular diffusion of hydroxide ion in an anion exchange membrane using nonreactive molecular dynamics simulation. Chem. Phys. Lett. 755, 137802 (2020).

    Article  CAS  Google Scholar 

  16. Chen, C., Tse, Y.-L. S., Lindberg, G. E., Knight, C. & Voth, G. A. Hydroxide solvation and transport in anion exchange membranes. J. Am. Chem. Soc. 138, 991–1000 (2016).

    Article  CAS  Google Scholar 

  17. Dong, D., Zhang, W., van Duin, A. C. T. & Bedrov, D. Grotthuss versus vehicular transport of hydroxide in anion-exchange membranes: insight from combined reactive and nonreactive molecular simulations. J. Phys. Chem. Lett. 9, 825–829 (2018).

    Article  CAS  Google Scholar 

  18. Zhang, W., Dong, D., Bedrov, D. & van Duin, A. C. T. Hydroxide transport and chemical degradation in anion exchange membranes: a combined reactive and non-reactive molecular simulation study. J. Mater. Chem. A 7, 5442–5452 (2019).

    Article  CAS  Google Scholar 

  19. Zelovich, T. et al. Hydroxide ion diffusion in anion-exchange membranes at low hydration: insights from ab initio molecular dynamics. Chem. Mater. 31, 5778–5787 (2019).

    Article  CAS  Google Scholar 

  20. Li, X., Yu, Y., Liu, Q. & Meng, Y. Synthesis and characterization of anion exchange membranes based on poly(arylene ether sulfone)s containing various cations functioned tetraphenyl methane moieties. Int. J. Hydrog. Energy 38, 11067–11073 (2013).

    Article  CAS  Google Scholar 

  21. Diesendruck, C. E. & Dekel, D. R. Water – a key parameter in the stability of anion exchange membrane fuel cells. Curr. Opin. Electrochem. 9, 173–178 (2018).

    Article  CAS  Google Scholar 

  22. Dekel, D. R. et al. Effect of water on the stability of quaternary ammonium groups for anion exchange membrane fuel cell applications. Chem. Mater. 29, 4425–4431 (2017).

    Article  CAS  Google Scholar 

  23. Lyonnard, S. et al. Perfluorinated surfactants as model charged systems for understanding the effect of confinement on proton transport and water mobility in fuel cell membranes. A study by QENS. Eur. Phys. J. Spec. Top. 189, 205–216 (2010).

    Article  CAS  Google Scholar 

  24. Perrin, J.-C., Lyonnard, S. & Volino, F. Quasielastic neutron scattering study of water dynamics in hydrated Nafion membranes. J. Phys. Chem. C 111, 3393–3404 (2007).

    Article  CAS  Google Scholar 

  25. Berrod, Q., Hanot, S., Guillermo, A., Mossa, S. & Lyonnard, S. Water sub-diffusion in membranes for fuel cells. Sci. Rep. 7, 8326 (2017).

    Article  CAS  Google Scholar 

  26. Hanot, S., Lyonnard, S. & Mossa, S. Sub-diffusion and population dynamics of water confined in soft environments. Nanoscale 8, 3314–3325 (2016).

    Article  CAS  Google Scholar 

  27. FuelCellStore. Fumasep FAD-55. https://www.fuelcellstore.com/fumasep-fad-55 (2020).

  28. Dlugolecki, P., Nymeijer, K., Metz, S. & Wessling, M. Current status of ion exchange membranes for power generation from salinity gradients. J. Membr. Sci. 319, 214–222 (2008).

    Article  CAS  Google Scholar 

  29. McGrath, M. J. et al. 110th anniversary: the dehydration and loss of ionic conductivity in anion exchange membranes due to FeCl4 ion exchange and the role of membrane microstructure. Ind. Eng. Chem. Res. 58, 22250–22259 (2019).

    Article  CAS  Google Scholar 

  30. Palaty, Z. & Benndová, H. Permeability of a Fumasep-FAD membrane for selected inorganic acids. Chem. Eng. Technol. 41, 385–391 (2018).

    Article  CAS  Google Scholar 

  31. Marino, M. G., Melchior, J. P., Wohlfarth, A. & Kreuer, K. D. Hydroxide, halide and water transport in a model anion exchange membrane. J. Membr. Sci. 464, 61–71 (2014).

    Article  CAS  Google Scholar 

  32. Melchior, J.-P., Lohstroh, W., Zamponni, M. & Jalarvo, N. H. Multiscale water dynamics in model anion exchange membranes for alkaline membrane fuel cells. J. Membr. Sci. 586, 240–247 (2019).

    Article  CAS  Google Scholar 

  33. Melchior, J.-P. & Jalarvo, N. H. A quasielastic neutron scattering study of water diffusion in model anion exchange membranes over localized and extended volume increments. J. Phys. Chem. C 123, 14195–14206 (2019).

    Article  CAS  Google Scholar 

  34. Wang, L., Peng, X., Mustain, W. E. B. & Varcoe, J. R. Radiation-grafted anion-exchange membranes: the switch from low- to high-density polyethylene leads to remarkably enhanced fuel cell performance. Energy Environ. Sci. 12, 1575–1579 (2019).

    Article  CAS  Google Scholar 

  35. Deavin, O. I. et al. Anion-exchange membranes for alkaline polymer electrolyte fuel cells: comparison of pendent benzyltrimethylammonium- and benzylmethylimidazolium-head-groups. Energy Environ. Sci. 5, 8584–8597 (2012).

    Article  CAS  Google Scholar 

  36. Yassin, K., Rasin, I. G., Brandon, S. & Dekel, D. R. Quantifying the critical effect of water diffusivity in anion exchange membranes for fuel cell applications. J. Membr. Sci. 608, 118206 (2020).

    Article  CAS  Google Scholar 

  37. Mandal, M. et al. The importance of water transport in high conductivity and high-power alkaline fuel cells. J. Electrochem. Soc. 167, 054501 (2020).

    Article  CAS  Google Scholar 

  38. Chempath, S. et al. Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes. J. Phys. Chem. C 112, 3179–3182 (2008).

    Article  CAS  Google Scholar 

  39. Prager, M., Pawlukojc, A., Wischnewski, A. & Wuttke, J. Inelastic neutron scattering study of methyl groups rotation in some methylxanthines. J. Chem. Phys. 127, 214509 (2007).

    Article  CAS  Google Scholar 

  40. de Petris, S., Frosini, V., Butta, V. & Boccaredda, M. Mechanical relaxation in poly(2.6-dimethyl-l.4-phenylene oxide) in the glassy state. Die Makromol. Chem. 109, 54–61 (1967).

    Article  Google Scholar 

  41. Ma, Z. & Tuckerman, M. E. On the connection between proton transport, structural diffusion, and reorientation of the hydrated hydroxide ion as a function of temperature. Chem. Phys. Lett. 511, 177–182 (2011).

    Article  CAS  Google Scholar 

  42. Zadok, I. et al. Unexpected hydroxide ion structure and properties at low hydration. J. Mol. Liq. 313, 113485 (2020).

    Article  CAS  Google Scholar 

  43. Torell, L. M. & Angell, C. A. Ion-matrix coupling in polymer electrolytes from relaxation time studies. Br. Polym. J. 20, 173–179 (1988).

    Article  CAS  Google Scholar 

  44. Angell, C. A. Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems. J. Non-Cryst. Solids 131–133, 13–31 (1991).

    Article  Google Scholar 

  45. Gotze, W. & Sjogren, L. Relaxation processes in supercooled liquids. Rep. Prog. Phys. 55, 241–376 (1992).

    Article  Google Scholar 

  46. Bhattacharyya, S. M., Bagchi, B. & Wolynes, P. G. Facilitation, complexity growth, mode coupling, and activated dynamics in supercooled liquids. Proc. Natl Acad. Sci. USA 105, 16077–16082 (2008).

    Article  CAS  Google Scholar 

  47. Dong, D., Wei, X., Hooper, J. B., Pan, H. & Bedrov, D. Role of cationic groups on structural and dynamical correlations in hydrated quaternary ammonium-functionalized poly(p-phenylene oxide)-based anion exchange membranes. Phys. Chem. Chem. Phys. 20, 19350–19362 (2018).

    Article  CAS  Google Scholar 

  48. Meek, K. M. et al. The alkali degradation of LDPE-based radiation-grafted anion-exchange membranes studied using different ex situ methods. RSC Adv. 10, 36467–36477 (2020).

    Article  CAS  Google Scholar 

  49. Mustain, W. E., Chatenet, M., Page, M. & Kim, Y. S. Durability challenges of anion exchange membrane fuel cells. Energy Environ. Sci. 13, 2805–2838 (2020).

    Article  CAS  Google Scholar 

  50. Ziv, N., Mustain, W. E. & Dekel, D. R. The effect of ambient carbon dioxide on anion-exchange membrane fuel cells. ChemSusChem 11, 1136–1150 (2018).

    Article  CAS  Google Scholar 

  51. Dekel, D. R., Rasin, I. G., Page, M. & Brandon, S. Steady state and transient simulation of anion exchange membrane fuel cells. J. Power Sources 375, 191–204 (2018).

    Article  CAS  Google Scholar 

  52. Zheng, Y. et al. Water uptake study of anion exchange membranes. Macromolecules 51, 3264–3278 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

In loving memory of Prof. Paul F. McMillan, a brilliant scientist and mentor, who not only inspired this work, but also his many colleagues throughout a long and proud career. F.F. acknowledges EPSRC for funding (grant EP/V057863/1). We thank the neutron scattering facilities at ILL (Grenoble, France), ISIS (Didcot, UK) and NIST (USA) for the award of beamtime necessary to carry out these experiments. We are grateful to ISIS and ILL for neutron beamtime (https://doi.org/10.5286/ISIS.E.RB1920608, https://doi.org/10.5286/ISIS.E.RB2090038-1 and https://doi.org/10.5291/ILL-DATA.9-11-1916). We also thank the Science and Technology Facilities Council for the use of the Nano-inXider instrument in the Materials Characterisation Laboratory. Access to the HFBS was provided by the Center for High-Resolution Neutron Scattering, a partnership between NIST and the National Science Foundation under agreement number DMR-2010792. Certain commercial equipment, instruments or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by NIST. This project received funding from the EU Graphene Flagship under Horizon 2020 Research and Innovation programme grant agreement no. 881603-GrapheneCore3 and from the Engineering and Physical Sciences Research Council Materials Research Hub for Energy Conversion, Capture, and Storage (M-RHEX) EP/R023581/1. F.F. acknowledges EPSRC for funding (grant EP/V057863/1). A.J.C. thanks the Society of Chemical Industry and the Ramsay Memorial Trust for support. Degradation studies performed at Surrey University were funded by Engineering and Physical Sciences Research Council grants EP/M022749/1 and EP/T009233/1.

Author information

Authors and Affiliations

Authors

Contributions

The study was initiated as a collaboration between the Commissariat à l’énergie atomique et aux énergies alternatives and University College London at a meeting between P.R.S., F.F., P.F.M., S.L., G.G., Q.B. and J.-M.Z., following discussions with D.J.L.B. and T.S.M. Neutron scattering experiments were initiated and directed by F.F. and S.L. in collaboration with V.G.S., Q.B., J.-M.Z., M.A. and M.T. at neutron beamline facilities. A.J.C. and K.S. also participated in neutron scattering experiments; K.S. carried out ionic conductivity experiments under supervision from T.S.M., D.J.L.B. and P.R.S.; A.J.C. provided Fourier transform infrared spectroscopy and TGA data; and N.M. obtained essential small- and wide-angle X-ray scattering and small-angle neutron scattering data. F.F. and P.F.M. worked closely with S.L. and Q.B. to interpret the neutron scattering results. Sample degradation, IEC determinations and Raman spectroscopy experiments were initiated and carried out by J.R.V. and A.P.P. All authors read, edited, commented on and fully contributed to developing the study and this manuscript.

Corresponding authors

Correspondence to Fabrizia Foglia or Sandrine Lyonnard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Dario Dekel, Naresh Osti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23, Texts 1–3 and Tables 1–9.

Source data

Source Data Fig. 1

Raw data for Raman spectra (Fig. 1h).

Source Data Fig. 2

Raw data for EFWS acquired at Eres = 1 μeV (Fig. 2c).

Source Data Fig. 3

Data reported in Fig. 3m.

Source Data Fig. 5

Data reported in Fig. 5c,d.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foglia, F., Berrod, Q., Clancy, A.J. et al. Disentangling water, ion and polymer dynamics in an anion exchange membrane. Nat. Mater. 21, 555–563 (2022). https://doi.org/10.1038/s41563-022-01197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01197-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing