Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries

Abstract

Designing a stable solid–electrolyte interphase on a Li anode is imperative to developing reliable Li metal batteries. Herein, we report a suspension electrolyte design that modifies the Li+ solvation environment in liquid electrolytes and creates inorganic-rich solid–electrolyte interphases on Li. Li2O nanoparticles suspended in liquid electrolytes were investigated as a proof of concept. Through theoretical and empirical analyses of Li2O suspension electrolytes, the roles played by Li2O in the liquid electrolyte and solid–electrolyte interphases of the Li anode are elucidated. Also, the suspension electrolyte design is applied in conventional and state-of-the-art high-performance electrolytes to demonstrate its applicability. Based on electrochemical analyses, improved Coulombic efficiency (up to ~99.7%), reduced Li nucleation overpotential, stabilized Li interphases and prolonged cycle life of anode-free cells (~70 cycles at 80% of initial capacity) were achieved with the suspension electrolytes. We expect this design principle and our findings to be expanded into developing electrolytes and solid–electrolyte interphases for Li metal batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Liquid and suspension electrolytes for the Li0 anode.
Fig. 2: Compact SEI analysis via cryo-STEM.
Fig. 3: Simulations for the Li+ solvation environment of RCE and SCE.
Fig. 4: Further analysis of the suspension electrolyte.
Fig. 5: High-performance electrolytes with the suspension electrolyte design.
Fig. 6: Full cell electrochemical performances of the suspension electrolytes.

Similar content being viewed by others

Data availability

The authors declare that all the data and relevant information are available within the article and Supplementary Information. Additional data are available from the corresponding author upon reasonable request.

Code availability

The MD and DFT simulation codes are available at https://github.com/prudnick94/LiSolvation_Li2OSuspension and https://github.com/exenGT/Li2O, respectively.

References

  1. Xiao, J. et al. Understanding and applying Coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).

    Article  CAS  Google Scholar 

  2. Zheng, J. et al. Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 49, 2701–2750 (2020).

    Article  CAS  Google Scholar 

  3. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  CAS  Google Scholar 

  4. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    Article  CAS  Google Scholar 

  5. Wu, H., Jia, H., Wang, C., Zhang, J. G. & Xu, W. Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Advanced Energy Materials 11, 2003092 (2021).

    Article  CAS  Google Scholar 

  6. Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).

    Article  CAS  Google Scholar 

  7. Li, Y. et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule 2, 2167–2177 (2018).

    Article  CAS  Google Scholar 

  8. Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506–510 (2017).

    Article  CAS  Google Scholar 

  9. Shadike, Z. et al. Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes. Nat. Nanotechnol. https://doi.org/10.1038/s41565-020-00845-5 (2021).

  10. Boyle, D. T. et al. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat. Energy https://doi.org/10.1038/s41560-021-00787-9 (2021).

  11. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  CAS  Google Scholar 

  12. Cao, X. et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

    Article  CAS  Google Scholar 

  13. Fan, X. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018).

    Article  CAS  Google Scholar 

  14. Zhang, X. Q. et al. Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries. ACS Energy Lett. 4, 411–416 (2019).

    Article  CAS  Google Scholar 

  15. Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article  CAS  Google Scholar 

  16. Yuan, S. et al. Salt-rich solid electrolyte interphase for safer high-energy-density Li metal batteries with limited Li excess. Chem. Commun. 56, 8257–8260 (2020).

    Article  CAS  Google Scholar 

  17. Yamada, Y., Wang, J., Ko, S., Watanabe, E. & Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019).

    Article  CAS  Google Scholar 

  18. Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    Article  CAS  Google Scholar 

  19. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  CAS  Google Scholar 

  20. Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  Google Scholar 

  21. Ren, X. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019).

    Article  CAS  Google Scholar 

  22. Chen, S. et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018).

    Article  Google Scholar 

  23. Chen, S. et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2, 1548–1558 (2018).

    Article  CAS  Google Scholar 

  24. Amanchukwu, C. V., Kong, X., Qin, J., Cui, Y. & Bao, Z. Nonpolar alkanes modify lithium-ion solvation for improved lithium deposition and stripping. Advanced Energy Materials 9, 1902116 (2019).

  25. Tasaki, K. et al. Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents. J. Electrochem. Soc. 156, A1019 (2009).

    Article  CAS  Google Scholar 

  26. Huang, W., Wang, H., Boyle, D. T., Li, Y. & Cui, Y. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid-electrolyte interphases by cryogenic electron microscopy. ACS Energy Lett. 5, 1128–1135 (2020).

    Article  CAS  Google Scholar 

  27. Liu, Y. et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9, 3656 (2018).

    Article  Google Scholar 

  28. Wang, J. et al. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy 4, 664–670 (2019).

    Article  CAS  Google Scholar 

  29. Lowe, J. S. & Siegel, D. J. Modeling the interface between lithium metal and its native oxide. ACS Appl. Mater. Interfaces 12, 46015–46026 (2020).

    Article  CAS  Google Scholar 

  30. Guo, R. & Gallant, B. M. Li2O solid electrolyte interphase: probing transport properties at the chemical potential of lithium. Chem. Mater. https://doi.org/10.1021/acs.chemmater.0c00333 (2020).

  31. Tan, L. et al. In-situ tailored 3D Li2O@Cu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency. J. Power Sources 463, 228178 (2020).

    Article  CAS  Google Scholar 

  32. Shen, C. et al. Li2O-reinforced solid electrolyte interphase on three-dimensional sponges for dendrite-free lithium deposition. Front. Chem. 6, 517 (2018).

  33. Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2017).

    Article  Google Scholar 

  34. Kim, M. S. et al. Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nat. Energy 3, 889–898 (2018).

    Article  CAS  Google Scholar 

  35. Pei, A., Zheng, G., Shi, F., Li, Y. & Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017).

    Article  CAS  Google Scholar 

  36. Fister, T. T. et al. Electronic structure of lithium battery interphase compounds: comparison between inelastic X-ray scattering measurements and theory. J. Chem. Phys. 135, 224513 (2011).

  37. Ozhabes, Y., Gunceler, D. & Arias, T. A. Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression. Preprint at arXiv https://arxiv.org/abs/1504.05799 (2015).

  38. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    Article  CAS  Google Scholar 

  39. Kim, S. C. et al. Potentiometric measurement to probe solvation energy and its correlation to lithium battery cyclability. J. Am. Chem. Soc. 143, 10301–10308 (2021).

    Article  CAS  Google Scholar 

  40. Amanchukwu, C. V. et al. A new class of ionically conducting fluorinated ether electrolytes with high electrochemical stability. J. Am. Chem. Soc. 142, 7393–7403 (2020).

    Article  CAS  Google Scholar 

  41. Kamphaus, E. P. et al. Role of inorganic surface layer on solid electrolyte interphase evolution at Li-metal anodes. ACS Appl. Mater. Interfaces 11, 31467–31476 (2019).

    Article  CAS  Google Scholar 

  42. Xie, J. et al. Atomic layer deposition of stable LiAlF4 lithium ion conductive interfacial layer for stable cathode cycling. ACS Nano 11, 7019–7027 (2017).

    Article  CAS  Google Scholar 

  43. Kim, M. S. et al. Enabling reversible redox reactions in electrochemical cells using protected LiAl intermetallics as lithium metal anodes. Sci. Adv. https://doi.org/10.1126/sciadv.aax5587 (2019).

  44. Kim, M. S. et al. Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nat. Energy https://doi.org/10.1038/s41560-018-0237-6 (2018).

  45. Abraham, M. J. et al. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Article  Google Scholar 

  46. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  47. Dodda, L. S., De Vaca, I. C., Tirado-Rives, J. & Jorgensen, W. L. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 45, W331–W336 (2017).

    Article  CAS  Google Scholar 

  48. Doherty, B., Zhong, X., Gathiaka, S., Li, B. & Acevedo, O. Revisiting OPLS force field parameters for ionic liquid simulations. J. Chem. Theory Comput. 13, 6131–6135 (2017).

    Article  CAS  Google Scholar 

  49. Benitez, L. & Seminario, J. M. Ion diffusivity through the solid electrolyte interphase in lithium-ion batteries. J. Electrochem. Soc. 164, E3159–E3170 (2017).

    Article  CAS  Google Scholar 

  50. Radin, M. D., Rodriguez, J. F., Tian, F. & Siegel, D. J. Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J. Am. Chem. Soc. 134, 1093–1103 (2012).

    Article  CAS  Google Scholar 

  51. Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  52. Allouche, A. Gabedit—a graphical user interface for computational chemistry softwares. J. Comput. Chem. 32, 174–182 (2011).

    Article  CAS  Google Scholar 

  53. Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005).

    Article  Google Scholar 

  54. Enkovaara, J. et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010).

  55. Hjorth Larsen, A. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  Google Scholar 

  56. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy under the Battery Materials Research Program and Battery 500 Consortium. Z.Z. acknowledges the support from the Stanford Interdisciplinary Graduate Fellowship. S.T.O. acknowledges support from the Knight Hennessy scholarship for graduate studies at Stanford University.

Author information

Authors and Affiliations

Authors

Contributions

M.S.K. and Y. Cui conceived the idea and conceptualized the work. M.S.K. performed the experiments and analysed the data with guidance from Y. Cui. M.S.K., Z.Z. and Y. Cui wrote the manuscript. Z.Z. performed cryo-STEM and SEM experiments and analyses. P.E.R. performed MD simulations and analysed the data. J.W. conducted DFT calculations. Z.Y. synthesized FDMB electrolyte and helped to take impedance measurements. S.T.O. performed XPS analysis. Y. Chen performed 7Li NMR analysis. S.C.K. measured the cell potential and relative Li+ solvation energy of the electrolytes. W.Z. helped take SEM images. Z.Y., H.W., S.C.K., D.T.B., X.K., Z.H. and W.H. provided technical help and helpful discussions. S.F.B. and L.-W.W. reviewed the manuscript. Y. Cui, Z.B. and J.Q. supervised the overall study. All the authors discussed the manuscript and provided comments.

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jiguang Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–37, Figure Captions 1 and 2, Tables 1–5, Notes 1–21 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.S., Zhang, Z., Rudnicki, P.E. et al. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 21, 445–454 (2022). https://doi.org/10.1038/s41563-021-01172-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01172-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing