Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Highly compressible glass-like supramolecular polymer networks


Supramolecular polymer networks are non-covalently crosslinked soft materials that exhibit unique mechanical features such as self-healing, high toughness and stretchability. Previous studies have focused on optimizing such properties using fast-dissociative crosslinks (that is, for an aqueous system, dissociation rate constant kd > 10 s1). Herein, we describe non-covalent crosslinkers with slow, tuneable dissociation kinetics (kd < 1 s−1) that enable high compressibility to supramolecular polymer networks. The resultant glass-like supramolecular networks have compressive strengths up to 100 MPa with no fracture, even when compressed at 93% strain over 12 cycles of compression and relaxation. Notably, these networks show a fast, room-temperature self-recovery (< 120 s), which may be useful for the design of high-performance soft materials. Retarding the dissociation kinetics of non-covalent crosslinks through structural control enables access of such glass-like supramolecular materials, holding substantial promise in applications including soft robotics, tissue engineering and wearable bioelectronics.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Design of glass-like SPNs.
Fig. 2: Thermodynamic and kinetic properties of slow-dissociative non-covalent crosslinks.
Fig. 3: Rheological characterization of glass-like SPNs.
Fig. 4: Evaluation of compressive properties of glass-like SPNs.
Fig. 5: Demonstration of rapid self-recovery of glass-like SPNs and their application.

Data availability

Data generated and analysed during this study are provided as source data with this paper or included in the Supplementary Information. Further data are available from the corresponding authors upon request.


  1. 1.

    Seiffert, S. & Sprakel, J. Physical chemistry of supramolecular polymer networks. Chem. Soc. Rev. 41, 909–930 (2012).

    CAS  Google Scholar 

  2. 2.

    Voorhaar, L. & Hoogenboom, R. Supramolecular polymer networks: hydrogels and bulk materials. Chem. Soc. Rev. 45, 4013–4031 (2016).

    CAS  Google Scholar 

  3. 3.

    Sun, T. L. et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932–937 (2013).

    CAS  Google Scholar 

  4. 4.

    Wu, Y. et al. Biomimetic supramolecular fibers exhibit water-induced supercontraction. Adv. Mater. 30, 1707169 (2018).

    Google Scholar 

  5. 5.

    Jeon, I., Cui, J., Illeperuma, W. R. K., Aizenberg, J. & Vlassak, J. J. Extremely stretchable and fast self-healing hydrogels. Adv. Mater. 28, 4678–4683 (2016).

    CAS  Google Scholar 

  6. 6.

    Li, C.-H. et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8, 618–624 (2016).

    CAS  Google Scholar 

  7. 7.

    Sun, G., Li, Z., Liang, R., Weng, L.-T. & Zhang, L. Super stretchable hydrogel achieved by non-aggregated spherulites with diameters <5 nm. Nat. Commun. 7, 12095 (2016).

    Google Scholar 

  8. 8.

    Cordier, P., Tournilhac, F., Soulié-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).

    CAS  Google Scholar 

  9. 9.

    Chen, Y., Kushner, A. M., Williams, G. A. & Guan, Z. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 4, 467–472 (2012).

    CAS  Google Scholar 

  10. 10.

    Yanagisawa, Y., Nan, Y., Okuro, K. & Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359, 72–76 (2018).

    CAS  Google Scholar 

  11. 11.

    Qin, B. et al. Tough and multi-recyclable cross-linked supramolecular polyureas via incorporating noncovalent bonds into main-chains. Adv. Mater. 32, 2000096 (2020).

    CAS  Google Scholar 

  12. 12.

    Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013).

    CAS  Google Scholar 

  13. 13.

    Choi, S., Kwon, T.-w, Coskun, A. & Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279–283 (2017).

    CAS  Google Scholar 

  14. 14.

    Tee, B. C.-K., Wang, C., Allen, R. & Bao, Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 7, 825–832 (2012).

    CAS  Google Scholar 

  15. 15.

    Liu, K., Jiang, Y., Bao, Z. & Yan, X. Skin-inspired electronics enabled by supramolecular polymeric materials. CCS Chem. 1, 431–447 (2019).

    CAS  Google Scholar 

  16. 16.

    Dankers, P. Y. W. et al. Hierarchical formation of supramolecular transient networks in water: a modular injectable delivery system. Adv. Mater. 24, 2703–2709 (2012).

    CAS  Google Scholar 

  17. 17.

    Zhang, S. et al. A ph-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nat. Mater. 14, 1065–1071 (2015).

    CAS  Google Scholar 

  18. 18.

    Yount, W. C., Loveless, D. M. & Craig, S. L. Strong means slow: dynamic contributions to the bulk mechanical properties of supramolecular networks. Angew. Chem. Int. Ed. 44, 2746–2748 (2005).

    CAS  Google Scholar 

  19. 19.

    Yount, W. C., Loveless, D. M. & Craig, S. L. Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks. J. Am. Chem. Soc. 127, 14488–14496 (2005).

    CAS  Google Scholar 

  20. 20.

    Grindy, S. C. et al. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nat. Mater. 14, 1210–1216 (2015).

    CAS  Google Scholar 

  21. 21.

    Appel, E. A., del Barrio, J., Loh, X. J. & Scherman, O. A. Supramolecular polymeric hydrogels. Chem. Soc. Rev. 41, 6195–6214 (2012).

    CAS  Google Scholar 

  22. 22.

    Xia, D. et al. Functional supramolecular polymeric networks: the marriage of covalent polymers and macrocycle-based host-guest interactions. Chem. Rev. 120, 6070–6123 (2020).

    CAS  Google Scholar 

  23. 23.

    Wang, L. et al. A self-cross-linking supramolecular polymer network enabled by crown-ether-based molecular recognition. J. Am. Chem. Soc. 142, 2051–2058 (2020).

    CAS  Google Scholar 

  24. 24.

    Shi, C.-Y. et al. An ultrastrong and highly stretchable polyurethane elastomer enabled by a zipper-like ring-sliding effect. Adv. Mater. 32, 2000345 (2020).

    CAS  Google Scholar 

  25. 25.

    Harada, A., Kobayashi, R., Takashima, Y., Hashidzume, A. & Yamaguchi, H. Macroscopic self-assembly through molecular recognition. Nat. Chem. 3, 34–37 (2011).

    CAS  Google Scholar 

  26. 26.

    Gotoh, H. et al. Optically transparent, high-toughness elastomer using a polyrotaxane cross-linker as a molecular pulley. Sci. Adv. 4, eaat7629 (2018).

    CAS  Google Scholar 

  27. 27.

    Ogoshi, T., Kayama, H., Yamafuji, D., Aoki, T. & Yamagishi, T.-a Supramolecular polymers with alternating pillar[5]arene and pillar[6]arene units from a highly selective multiple host–guest complexation system and monofunctionalized pillar[6]arene. Chem. Sci. 3, 3221–3226 (2012).

    CAS  Google Scholar 

  28. 28.

    Li, Z.-Y. et al. Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5]arene metallacycles and their multiple stimuli-responsive behavior. J. Am. Chem. Soc. 136, 8577–8589 (2014).

    CAS  Google Scholar 

  29. 29.

    Wang, X.-H. et al. Efficient aggregation-induced emission manipulated by polymer host materials. Adv. Mater. 31, 1903962 (2019).

    Google Scholar 

  30. 30.

    Xu, W., Song, Q., Xu, J.-F., Serpe, M. J. & Zhang, X. Supramolecular hydrogels fabricated from supramonomers: a novel wound dressing material. ACS Appl. Mater. Interfaces 9, 11368–11372 (2017).

    CAS  Google Scholar 

  31. 31.

    Liu, J. et al. Tough supramolecular polymer networks with extreme stretchability and fast room-temperature self-healing. Adv. Mater. 29, 1605325 (2017).

    Google Scholar 

  32. 32.

    Lee, J. W., Samal, S., Selvapalam, N., Kim, H.-J. & Kim, K. Cucurbituril homologues and derivatives:new opportunities in supramolecular chemistry. Acc. Chem. Res. 36, 621–630 (2003).

    CAS  Google Scholar 

  33. 33.

    Lagona, J., Mukhopadhyay, P., Chakrabarti, S. & Isaacs, L. The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005).

    CAS  Google Scholar 

  34. 34.

    Urbach, A. R. & Ramalingam, V. Molecular recognition of amino acids, peptides, and proteins by cucurbit[n]uril receptors. Isr. J. Chem. 51, 664–678 (2011).

    CAS  Google Scholar 

  35. 35.

    Ni, X.-L. et al. Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. Chem. Soc. Rev. 42, 9480–9508 (2013).

    CAS  Google Scholar 

  36. 36.

    Assaf, K. I. & Nau, W. M. Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–418 (2015).

    CAS  Google Scholar 

  37. 37.

    Barrow, S. J., Kasera, S., Rowland, M. J., del Barrio, J. & Scherman, O. A. Cucurbituril-based molecular recognition. Chem. Rev. 115, 12320–12406 (2015).

    CAS  Google Scholar 

  38. 38.

    Huang, Z. et al. Host-enhanced phenyl-perfluorophenyl polar-π interactions. J. Am. Chem. Soc. 142, 7356–7361 (2020).

    CAS  Google Scholar 

  39. 39.

    Biedermann, F., Vendruscolo, M., Scherman, O. A., De Simone, A. & Nau, W. M. Cucurbit [8] uril and blue-box: high-energy water release overwhelms electrostatic interactions. J. Am. Chem. Soc. 135, 14879–14888 (2013).

    CAS  Google Scholar 

  40. 40.

    Bell, R. P. & Hinshelwood, C. N. The theory of reactions involving proton transfers. Proc. Math. Phys. Eng. Sci. 154, 414–429 (1936).

    Google Scholar 

  41. 41.

    Evans, M. G. & Polanyi, M. Further considerations on the thermodynamics of chemical equilibria and reaction rates. Trans. Faraday Soc. 32, 1333–1360 (1936).

    CAS  Google Scholar 

  42. 42.

    Burnouf, D. et al. kinitc: a new method for obtaining joint thermodynamic and kinetic data by isothermal titration calorimetry. J. Am. Chem. Soc. 134, 559–565 (2012).

    CAS  Google Scholar 

  43. 43.

    Huang, Z. et al. Supramolecular chemistry of cucurbiturils: tuning cooperativity with multiple noncovalent interactions from positive to negative. Langmuir 32, 12352–12360 (2016).

    CAS  Google Scholar 

  44. 44.

    Sheppard, J. & Clapson, W. Compression stress strain of rubber. Rubber Chem. Technol. 6, 126–150 (1933).

    Google Scholar 

  45. 45.

    Elleuch, R., Elleuch, K., Salah, B. & Zahouani, H. Tribological behavior of thermoplastic polyurethane elastomers. Mater. Des. 28, 824–830 (2007).

    CAS  Google Scholar 

  46. 46.

    Gerratt, A. P., Michaud, H. O. & Lacour, S. P. Elastomeric electronic skin for prosthetic tactile sensation. Adv. Func. Mater. 25, 2287–2295 (2015).

    CAS  Google Scholar 

  47. 47.

    Lee, W., Yeo, K., Andriyana, A., Shee, Y. & Adikan, F. M. Effect of cyclic compression and curing agent concentration on the stabilization of mechanical properties of pdms elastomer. Mater. Des. 96, 470–475 (2016).

    CAS  Google Scholar 

  48. 48.

    Park, J. et al. Extremely rapid self-healable and recyclable supramolecular materials through planetary ball milling and host–guest interactions. Adv. Mater. 32, 2002008 (2020).

    CAS  Google Scholar 

  49. 49.

    Hammock, M. L., Chortos, A., Tee, B. C.-K., Tok, J. B.-H. & Bao, Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013).

    CAS  Google Scholar 

  50. 50.

    Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).

    CAS  Google Scholar 

Download references


O.A.S. and G.W. acknowledge the Leverhulme Trust Program Grant (Natural Materials Innovation). Z.H. acknowledges the Marie Skłodowska-Curie Fellowship (no. 845640). X.C. acknowledges Cambridge Display Technology (CDT) for financial support. D.J.W. thanks the Engineering and Physical Sciences Research Council for a PhD studentship (grant no. EP/R512461/1). We thank G.G. Malliaras for helpful discussions.

Author information




Z.H. and O.A.S. conceived the idea. Z.H., X.C., S.J.K.O., G.W., D.J.W., J.A.M. and O.A.S. designed the experiments. Z.H. executed most of the experiments and analysed the data. X.C., S.J.K.O., G.W., D.J.W., J.L. and J.A.M. helped perform some of the experiments and data analysis. Z.H., J.A.M. and O.A.S. wrote the paper. All authors discussed the experiments, edited the paper and gave consent for this publication under the supervision of O.A.S.

Corresponding author

Correspondence to Oren A. Scherman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Richard Hoogenboom, Rebecca Kramer-Bottiglio and Mathew Webber for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Charts 1 and 2, Figs. 1–41, Tables 1–5 and description of Videos 1–6.

Supplementary Video 1

Compressive test: 100 MPa.

Supplementary Video 2

Compressive test: 1.0 GPa.

Supplementary Video 3

Human compression demo.

Supplementary Video 4

Car-compression demo.

Supplementary Video 5

Ionic conductor demo.

Supplementary Video 6

Ball-drop demo.

Source data

Source Data Fig. 2

Source data in tables for Fig. 2 in the main text.

Source Data Fig. 3

Source data in tables for Fig. 3 in the main text.

Source Data Fig. 4

Source data in tables for Fig. 4 in the main text.

Source Data Fig. 5

Source data in tables for Fig. 5 in the main text.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Chen, X., O’Neill, S.J.K. et al. Highly compressible glass-like supramolecular polymer networks. Nat. Mater. (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing