Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sign-tunable anomalous Hall effect induced by two-dimensional symmetry-protected nodal structures in ferromagnetic perovskite thin films

An Author Correction to this article was published on 13 October 2021

This article has been updated


Magnetism and spin–orbit coupling are two quintessential ingredients underlying topological transport phenomena in itinerant ferromagnets. When spin-polarized bands support nodal points/lines with band degeneracy that can be lifted by spin–orbit coupling, the nodal structures become a source of Berry curvature, leading to a large anomalous Hall effect. However, two-dimensional systems can possess stable nodal structures only when proper crystalline symmetry exists. Here we show that two-dimensional spin-polarized band structures of perovskite oxides generally support symmetry-protected nodal lines and points that govern both the sign and the magnitude of the anomalous Hall effect. To demonstrate this, we performed angle-resolved photoemission studies of ultrathin films of SrRuO3, a representative metallic ferromagnet with spin–orbit coupling. We show that the sign-changing anomalous Hall effect upon variation in the film thickness, magnetization and chemical potential can be well explained by theoretical models. Our work may facilitate new switchable devices based on ferromagnetic ultrathin films.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: FS of 2D ferromagnetic perovskites.
Fig. 2: ARPES data of a 4 u.c. SRO thin film.
Fig. 3: Non-monotonous AHE in SRO ultrathin films.
Fig. 4: Mechanism for the sign-tunable AHE induced by NLs and nodal points in a 2D ferromagnetic perovskite.
Fig. 5: Berry curvature hot spots from nodal structures and switchable AHE of the SRO ultrathin film.

Data availability

The data that support the findings of this study are available from the corresponding authors on request.

Change history


  1. 1.

    Burkov, A. A. Anomalous Hall effect in Weyl metals. Phys. Rev. Lett. 113, 187202 (2014).

    CAS  Google Scholar 

  2. 2.

    Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

    CAS  Google Scholar 

  3. 3.

    Groenendijk, D. J. et al. Berry phase engineering at oxide interfaces. Phys. Rev. Res. 2, 023404 (2020).

    CAS  Google Scholar 

  4. 4.

    Chang, G. et al. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X = Si, Ge, or Sn). Sci. Rep. 6, 38839 (2016).

    CAS  Google Scholar 

  5. 5.

    Chang, G. et al. Magnetic and noncentrosymmetric Weyl fermion semimetals in the RAlGe family of compounds (R = rare earth). Phys. Rev. B 97, 041104 (2018).

    CAS  Google Scholar 

  6. 6.

    Kim, K. et al. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal. Nat. Mater. 17, 794–799 (2018).

    CAS  Google Scholar 

  7. 7.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Google Scholar 

  8. 8.

    Zeng, C., Yao, Y., Niu, Q. & Weitering, H. H. Linear magnetization dependence of the intrinsic anomalous Hall effect. Phys. Rev. Lett. 96, 037204 (2006).

    Google Scholar 

  9. 9.

    Wang, Q. et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9, 3681 (2018).

    Google Scholar 

  10. 10.

    Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

    CAS  Google Scholar 

  11. 11.

    Chen, Y., Bergman, D. & Burkov, A. Weyl fermions and the anomalous Hall effect in metallic ferromagnets. Phys. Rev. B 88, 125110 (2013).

    Google Scholar 

  12. 12.

    Vazifeh, M. M. & Franz, M. Electromagnetic response of Weyl semimetals. Phys. Rev. Lett. 111, 027201 (2013).

    CAS  Google Scholar 

  13. 13.

    Zyuzin, A. A. & Tiwari, R. P. Intrinsic anomalous Hall effect in type-II Weyl semimetals. JETP Lett. 103, 717–722 (2016).

    CAS  Google Scholar 

  14. 14.

    Young, S. M. & Kane, C. L. Dirac semimetals in two dimensions. Phys. Rev. Lett. 115, 126803 (2015).

    Google Scholar 

  15. 15.

    Niu, C. et al. Two-dimensional topological nodal line semimetal in layered X2Y (X = Ca, Sr, and Ba; Y = As, Sb, and Bi). Phys. Rev. B 95, 235138 (2017).

    Google Scholar 

  16. 16.

    Zhang, H., Huang, H., Haule, K. & Vanderbilt, D. Quantum anomalous Hall phase in (001) double-perovskite monolayers via intersite spin-orbit coupling. Phys. Rev. B 90, 165143 (2014).

    Google Scholar 

  17. 17.

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Google Scholar 

  18. 18.

    Neumeier, J. et al. Magnetic, thermal, transport, and structural properties of Sr2RuO4+δ: enhanced charge-carrier mass in a nearly metallic oxide. Phys. Rev. B 50, 17910 (1994).

    CAS  Google Scholar 

  19. 19.

    Puchkov, A., Shen, Z.-X., Kimura, T. & Tokura, Y. ARPES results on Sr2RuO4: Fermi surface revisited. Phys. Rev. B 58, R13322 (1998).

    CAS  Google Scholar 

  20. 20.

    Damascelli, A. et al. Fermi surface, surface states, and surface reconstruction in Sr2RuO4. Phys. Rev. Lett. 85, 5194–5197 (2000).

    CAS  Google Scholar 

  21. 21.

    Mackenzie, A. P. et al. Quantum oscillations in the layered perovskite superconductor Sr2RuO4. Phys. Rev. Lett. 76, 3786–3789 (1996).

    CAS  Google Scholar 

  22. 22.

    Mackenzie, A. P. et al. The Fermi surface topography of Sr2RuO4. J. Phys. Soc. Jpn 67, 385–388 (1998).

    CAS  Google Scholar 

  23. 23.

    Chang, S. H. et al. Thickness-dependent structural phase transition of strained SrRuO3 ultrathin films: the role of octahedral tilt. Phys. Rev. B 84, 104101 (2011).

    Google Scholar 

  24. 24.

    Sohn, B. et al. Stable humplike Hall effect and noncoplanar spin textures in SrRuO3 ultrathin films. Phys. Rev. Res. 3, 023232 (2021).

    CAS  Google Scholar 

  25. 25.

    Singh, D. & Mazin, I. Electronic structure and magnetism of Sr3Ru2O7. Phys. Rev. B 63, 165101 (2001).

    Google Scholar 

  26. 26.

    Chang, Y. J. et al. Fundamental thickness limit of itinerant ferromagnetic SrRuO3. Phys. Rev. Lett. 103, 057201 (2009).

    Google Scholar 

  27. 27.

    Jeong, D. W. et al. Temperature evolution of itinerant ferromagnetism in SrRuO3 probed by optical spectroscopy. Phys. Rev. Lett. 110, 247202 (2013).

    CAS  Google Scholar 

  28. 28.

    Zhang, P. et al. A precise method for visualizing dispersive features in image plots. Rev. Sci. Instrum. 82, 043712 (2011).

    CAS  Google Scholar 

  29. 29.

    Matsuno, J. et al. Interface-driven topological Hall effect in SrRuO3-SrIrO3 bilayer. Sci. Adv. 2, e1600304 (2016).

    Google Scholar 

  30. 30.

    Sohn, B. et al. Hump-like structure in Hall signal from ultra-thin SrRuO3 films without inhomogeneous anomalous Hall effect. Curr. Appl. Phys. 20, 186–190 (2020).

    Google Scholar 

  31. 31.

    Jin, L. et al. Two-dimensional Weyl nodal-line semimetal in a d0 ferromagnetic K2N monolayer with a high Curie temperature. Phys. Rev. B 102, 125118 (2020).

    CAS  Google Scholar 

  32. 32.

    Jin, L. et al. Ferromagnetic two-dimensional metal-chlorides MCl (M = Sc, Y, and La): candidates for Weyl nodal line semimetals with small spin-orbit coupling gaps. Appl. Surf. Sci. 520, 146376 (2020).

    CAS  Google Scholar 

  33. 33.

    Sun, K., Yao, H., Fradkin, E. & Kivelson, S. A. Topological insulators and nematic phases from spontaneous symmetry breaking in 2D Fermi systems with a quadratic band crossing. Phys. Rev. Lett. 103, 046811 (2009).

    Google Scholar 

  34. 34.

    Chong, Y. D., Wen, X.-G. & Soljačić, M. Effective theory of quadratic degeneracies. Phys. Rev. B 77, 235125 (2008).

    Google Scholar 

  35. 35.

    Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Google Scholar 

  36. 36.

    Go, D., Jo, D., Kim, C. & Lee, H.-W. Intrinsic spin and orbital Hall effects from orbital texture. Phys. Rev. Lett. 121, 086602 (2018).

    CAS  Google Scholar 

  37. 37.

    Cho, S. et al. Experimental observation of hidden Berry curvature in inversion-symmetric bulk 2H-WSe2. Phys. Rev. Lett. 121, 186401 (2018).

    CAS  Google Scholar 

  38. 38.

    Park, S. R. et al. Chiral orbital-angular momentum in the surface states of Bi2Se3. Phys. Rev. Lett. 108, 046805 (2012).

    Google Scholar 

  39. 39.

    Schüler, M. et al. Local Berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020).

    Google Scholar 

  40. 40.

    Schultz, M., Levy, S., Reiner, J. W. & Klein, L. Magnetic and transport properties of epitaxial films of SrRuO3 in the ultrathin limit. Phys. Rev. B 79, 125444 (2009).

    Google Scholar 

  41. 41.

    Mathieu, R. et al. Scaling of the anomalous Hall effect in Sr1−xCaxRuO3. Phys. Rev. Lett. 93, 016602 (2004).

    Google Scholar 

  42. 42.

    Zhang, D. et al. Origin of the anomalous Hall effect in SrCoO3 thin films. Phys. Rev. B 100, 060403 (2019).

    CAS  Google Scholar 

  43. 43.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    CAS  Article  Google Scholar 

  44. 44.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  45. 45.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  46. 46.

    Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020).

    CAS  Google Scholar 

  47. 47.

    Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995).

    CAS  Google Scholar 

  48. 48.

    Vaugier, L., Jiang, H. & Biermann, S. Hubbard U and Hund exchange J in transition metal oxides: screening versus localization trends from constrained random phase approximation. Phys. Rev. B 86, 165105 (2012).

    Google Scholar 

  49. 49.

    Bezdicka, P., Wattiaux, A., Grenier, J., Pouchard, M. & Hagenmuller, P. Preparation and characterization of fully stoichiometric SrCoO3 by electrochemical oxidation. Z. Anorg. Allg. Chem. 619, 7–12 (1993).

    CAS  Google Scholar 

Download references


We gratefully acknowledge discussions with J. R. Kim. This work is supported by IBS-R009-D1 and IBS-R009-G2 through the Institute for Basic Science (IBS) Center for Correlated Electron Systems. B.-J.Y. was supported by the Institute for Basic Science in Korea (grant no. IBS-R009-D1), Samsung Science and Technology Foundation under project no. SSTF-BA2002-06, the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (no. 2021R1A2C4002773, and no. NRF-2021R1A5A1032996), and the US Army Research Office and Asian Office of Aerospace Research & Development (AOARD) under grant no. W911NF-18-1-0137. S.Y.P. was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (no. 2021R1C1C1009494) and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (no. 2021R1A6A1A03043957). The Advanced Light Source is supported by the Office of Basic Energy Sciences of the US Department of Energy under contract no. DE-AC02-05CH11231.

Author information




B.S., E.L., B.-J.Y. and C.K. conceived the project. S.Y.P., B.-J.Y. and C.K. led the project. B.S. synthesized and characterized the materials with support from B.K. and T.W.N.; B.S., W.K. and J.H. conducted ARPES measurements with support from J.D.D., J.S.O., J.K.J., D.O. and Y.K.; B.S., H.R. and S.H. conducted spin-resolved ARPES measurements. B.S. performed transport measurements. B.S. and B.K. performed magnetic measurements. M.K. and D.K. performed ionic liquid gating. B.S. analysed the experimental data. E.L. conducted tight-binding calculations and symmetry analysis. S.Y.P. conducted first-principles calculations. B.S., E.L., B.-J.Y. and C.K. wrote the paper with contributions from other authors. All authors participated in the discussions and commented on the manuscript.

Corresponding authors

Correspondence to Se Young Park, Bohm-Jung Yang or Changyoung Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21 and Discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sohn, B., Lee, E., Park, S.Y. et al. Sign-tunable anomalous Hall effect induced by two-dimensional symmetry-protected nodal structures in ferromagnetic perovskite thin films. Nat. Mater. (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing