Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atomistic observation on diffusion-mediated friction between single-asperity contacts

Abstract

The field of nanotribology has long suffered from the inability to directly observe what takes place at a sliding interface. Although techniques based on atomic force microscopy have identified many friction phenomena at the nanoscale, many interpretative pitfalls still result from the indirect or ex situ characterization of contacting surfaces. Here we combined in situ high-resolution transmission electron microscopy and atomic force microscopy measurements to provide direct real-time observations of atomic-scale interfacial structure during frictional processes and discovered the formation of a loosely packed interfacial layer between two metallic asperities that enabled a low friction under tensile stress. This finding is corroborated by molecular dynamic simulations. The loosely packed interfacial layer became an ordered layer at equilibrium distances under compressive stress, which led to a transition from a low-friction to a dissipative high-friction motion. This work directly unveils a unique role of atomic diffusion in the friction of metallic contacts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: In situ TEM friction experimental set-up.
Fig. 2: The IL induced continuous sliding with low friction compared with the high friction without an IL.
Fig. 3: MD simulations of the interfacial structure and friction behaviour between W–Au asperities as a function of their relative distance.
Fig. 4: Low friction mediated by atomic diffusion in the loosely packed IL.

Data availability

All data needed to evaluate the conclusions in the Article are present in the Article and/or the Supplementary Information. Additional data related to this Article may be requested from the corresponding authors.

Code availability

The computational code used in this study is available upon request from the corresponding authors.

References

  1. 1.

    Carpick, R. W. Controlling friction. Science 313, 184–185 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    Landman, U., Luedtke, W., Burnham, N. A. & Colton, R. J. Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248, 454–461 (1990).

    CAS  Article  Google Scholar 

  3. 3.

    Bhushan B. Nanotribology and Nanomechanics: An Introduction (Springer Science & Business Media, 2008).

  4. 4.

    Lantz, M. A., Wiesmann, D. & Gotsmann, B. Dynamic superlubricity and the elimination of wear on the nanoscale. Nat. Nanotechnol. 4, 586–591 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Mate, C. M., McClelland, G. M., Erlandsson, R. & Chiang, S. in Scanning Tunneling Microscopy (ed. Neddermeyer, H.) 226–229 (Springer, 1987).

  6. 6.

    Dong, Y., Li, Q. & Martini, A. Molecular dynamics simulation of atomic friction: a review and guide. J. Vac. Sci. Technol. A 31, 030801 (2013).

    Article  CAS  Google Scholar 

  7. 7.

    Tomlinson, G. J. T. L. A molecular theory of friction. Lond. Edinb. Dublin Phil. Mag. J. Sci. 7, 905–939 (1929).

    CAS  Article  Google Scholar 

  8. 8.

    Weiss, M. & Elmer, F.-J. Dry friction in the Frenkel-Kontorova-Tomlinson model: static properties. Phys. Rev. B 53, 7539–7549 (1996).

    CAS  Article  Google Scholar 

  9. 9.

    Shinjo, K. & Hirano, M. Dynamics of friction: superlubric state. Surf. Sci. 283, 473–478 (1993).

    CAS  Article  Google Scholar 

  10. 10.

    Hölscher, H., Schirmeisen, A. & Schwarz, U. D. Principles of atomic friction: from sticking atoms to superlubric sliding. Phil. Trans. R. Soc. A 366, 1383–1404 (2008).

    Article  CAS  Google Scholar 

  11. 11.

    Kim, W. K. & Falk, M. L. Atomic-scale simulations on the sliding of incommensurate surfaces: the breakdown of superlubricity. Phys. Rev. B 80, 235428 (2009).

    Article  CAS  Google Scholar 

  12. 12.

    Socoliuc, A., Bennewitz, R., Gnecco, E. & Meyer, E. Transition from stick–slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    Bennewitz, R. et al. Atomic-scale stick–slip processes on Cu(111). Phys. Rev. B 60, R11301–R11304 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    Gosvami, N. N., Filleter, T., Egberts, P. & Bennewitz, R. Microscopic friction studies on metal surfaces. Tribol. Lett. 39, 19–24 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    Bennewitz, R., Hausen, F. & Gosvami, N. N. Nanotribology of clean and modified gold surfaces. J. Mater. Res. 28, 1279–1288 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Socoliuc, A. et al. Atomic-scale control friction by actuation of nanometer-sized contacts. Science 313, 207–210 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    Dietzel, D., Schwarz, U. D. & Schirmeisen, A. Nanotribological studies using nanoparticle manipulation: principles and application to structural lubricity. Friction 2, 114–139 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Krylov, S. Y., Dijksman, J., Van Loo, W. & Frenken, J. Stick–slip motion in spite of a slippery contact: do we get what we see in atomic friction? Phys. Rev. Lett. 97, 166103 (2006).

    Article  CAS  Google Scholar 

  19. 19.

    Krylov, S. Y. & Frenken, J. W. Thermal contact delocalization in atomic scale friction: a multitude of friction regimes. New J. Phys. 9, 398–423 (2007).

    Article  Google Scholar 

  20. 20.

    Liao, Y. & Marks, L. In situ single asperity wear at the nanometre scale. Int. Mater. Rev. 62, 99–115 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Sato, T., Ishida, T., Jalabert, L. & Fujita, H. Real-time transmission electron microscope observation of nanofriction at a single Ag asperity. Nanotechnology 23, 505701 (2012).

    Article  CAS  Google Scholar 

  22. 22.

    Ishida, T. et al. Time-lapse nanoscopy of friction in the non-Amontons and non-Coulomb regime. Nano Lett. 15, 1476–1480 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Fujisawa, S. & Kizuka, T. Lateral displacement of an AFM tip observed by in-situ TEM/AFM combined microscopy: the effect of the friction in AFM. Tribol. Lett. 15, 163–168 (2003).

    Article  Google Scholar 

  24. 24.

    Zhong, L. et al. Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals. Nat. Mater. 16, 439–445 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Hirano, M. Superlubricity: a state of vanishing friction. Wear 254, 932–940 (2003).

    CAS  Article  Google Scholar 

  26. 26.

    Gnecco, E. et al. Velocity dependence of atomic friction. Phys Rev. Lett. 84, 1172–1175 (2000).

    CAS  Article  Google Scholar 

  27. 27.

    Breki, A. & Nosonovsky, M. Ultraslow frictional sliding and the stick–slip transition. Appl. Phys. Lett. 113, 241602 (2018).

    Article  CAS  Google Scholar 

  28. 28.

    Oliver, D. et al. One-to-one spatially matched experiment and atomistic simulations of nanometre-scale indentation. Nanotechnology 25, 025701 (2013).

    Article  CAS  Google Scholar 

  29. 29.

    Schaefer, D., Patil, A., Andres, R. & Reifenberger, R. Elastic properties of individual nanometer-size supported gold clusters. Phys. Rev. B 51, 5322–5332 (1995).

    CAS  Article  Google Scholar 

  30. 30.

    Thormann, E. Negative friction coefficients. Nat. Mater. 12, 468–468 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Oliver, D. et al. Conductivity of an atomically defined metallic interface. Proc. Natl Acad. Sci. USA 109, 19097–19102 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    Vitos, L., Ruban, A., Skriver, H. L. & Kollar, J. The surface energy of metals. Surf. Sci. 411, 186–202 (1998).

    CAS  Article  Google Scholar 

  33. 33.

    Bhushan, B., Israelachvili, J. N. & Landman, U. J. N. Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374, 607–616 (1995).

    CAS  Article  Google Scholar 

  34. 34.

    Dick, K., Dhanasekaran, T., Zhang, Z. & Meisel, D. Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 124, 2312–2317 (2002).

    CAS  Article  Google Scholar 

  35. 35.

    Luedtke, W. & Landman, U. Solid and liquid junctions. Comput. Mater. Sci. 1, 1–24 (1992).

    CAS  Article  Google Scholar 

  36. 36.

    Karaborni, S. Order-disorder transition during approach and separation of two parallel surfaces. Phys. Rev. Lett. 73, 1668–1671 (1994).

    CAS  Article  Google Scholar 

  37. 37.

    Cieplak, M., Smith, E. D. & Robbins, M. O. Molecular origins of friction: the force on adsorbed layers. Science 265, 1209–1212 (1994).

    CAS  Article  Google Scholar 

  38. 38.

    So, M., Jacobsen, K. W. & Stoltze, P. Simulations of atomic-scale sliding friction. Phys. Rev. B 53, 2101–2113 (1996).

    Google Scholar 

  39. 39.

    Deng, Z., Smolyanitsky, A., Li, Q., Feng, X.-Q. & Cannara, R. J. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. Nat. Mater. 11, 1032–1037 (2012).

    CAS  Article  Google Scholar 

  40. 40.

    Amontons, G. De la resistance cause’e dans les machines (About resistance and force in machines). Mem l’Aced. R. 1699, 257–282 (1699).

    Google Scholar 

  41. 41.

    Merkle, A. P. & Marks, L. D. Liquid-like tribology of gold studied by in situ TEM. Wear 265, 1864–1869 (2008).

    CAS  Article  Google Scholar 

  42. 42.

    Guo, W., Wang, Z. & Li, J. Diffusive versus displacive contact plasticity of nanoscale asperities: temperature- and velocity-dependent strongest size. Nano Lett. 15, 6582–6585 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    Hirano, M., Shinjo, K., Kaneko, R. & Murata, Y. Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett. 67, 2642–2645 (1991).

    CAS  Article  Google Scholar 

  44. 44.

    He, G., Müser, M. H. & Robbins, M. O. Adsorbed layers and the origin of static friction. Science 284, 1650–1652 (1999).

    CAS  Article  Google Scholar 

  45. 45.

    Dawson, B., Lee, S. & Krim, J. Tribo-induced melting transition at a sliding asperity contact. Phys. Rev. Lett. 103, 205502 (2009).

    CAS  Article  Google Scholar 

  46. 46.

    Müser, M. H., Wenning, L. & Robbins, M. O. Simple microscopic theory of Amontons’s laws for static friction. Phys. Rev. Lett. 86, 1295–1298 (2001).

    Article  CAS  Google Scholar 

  47. 47.

    Hurtado, J. A. & Kim, K. S. Scale effects in friction of single–asperity contacts. I. From concurrent slip to single–dislocation–assisted slip. Proc. R. Soc. Lond. A 455, 3363–3384 (1999).

    CAS  Article  Google Scholar 

  48. 48.

    Dong, Y., Li, Q., Wu, J. & Martini, A. Friction, slip and structural inhomogeneity of the buried interface. Model. Simul. Mater. Sci. Eng. 19, 065003 (2011).

    Article  CAS  Google Scholar 

  49. 49.

    Tanaka, M. Molecular dynamics study of velocity autocorrelation function in a model of expanded liquid rubidium. Prog. Theor. Phys. Suppl. 69, 439–450 (1980).

    CAS  Article  Google Scholar 

  50. 50.

    Yoshizawa, H., McGuiggan, P. & Israelachvili, J. Identification of a second dynamic state during stick–slip motion. Science 259, 1305–1308 (1993).

    CAS  Article  Google Scholar 

  51. 51.

    Thompson, P. A. & Robbins, M. O. Origin of stick-slip motion in boundary lubrication. Science 250, 792–794 (1990).

    CAS  Article  Google Scholar 

  52. 52.

    Müser, M. H. Velocity dependence of kinetic friction in the Prandtl–Tomlinson model. Phys. Rev. B 84, 125419 (2011).

    Article  CAS  Google Scholar 

  53. 53.

    Jaklevic, R. & Elie, L. Scanning-tunneling-microscope observation of surface diffusion on an atomic scale: Au on Au(111). Phys. Rev. Lett. 60, 120–123 (1988).

    CAS  Article  Google Scholar 

  54. 54.

    Gu, X. W. et al. Pseudoelasticity large strains Au nanocrystals. Phys. Sci. Rev. 121, 056102 (2018).

    CAS  Google Scholar 

  55. 55.

    Sun, J. et al. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat. Mater. 13, 1007–1012 (2014).

    CAS  Article  Google Scholar 

  56. 56.

    He, Y. et al. In situ observation of shear-driven amorphization in silicon crystals. Nat. Nanotechnol. 11, 866–871 (2016).

    CAS  Article  Google Scholar 

  57. 57.

    Zhang, X. et al. Direction-specific van der Waals attraction between rutile TiO2 nanocrystals. Science 356, 434–437 (2017).

    CAS  Article  Google Scholar 

  58. 58.

    Ranjan, A., Pey, K. & O’Shea, S. The interplay between drift and electrical measurement in conduction atomic force microscopy. Rev. Sci. Instrum. 90, 073701 (2019).

    CAS  Article  Google Scholar 

  59. 59.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Article  Google Scholar 

  60. 60.

    Daw, M. S. & Baskes, M. I. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443–6453 (1984).

    CAS  Article  Google Scholar 

  61. 61.

    Zhou, X. W., Johnson, R. A. & Wadley, H. N. G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 69, 144113 (2004).

    Article  CAS  Google Scholar 

  62. 62.

    Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    CAS  Article  Google Scholar 

  63. 63.

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  64. 64.

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  Google Scholar 

  65. 65.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  66. 66.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

  67. 67.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  68. 68.

    Kresse, G. & Hafner, J. Ab-initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    CAS  Article  Google Scholar 

  69. 69.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Article  Google Scholar 

  70. 70.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

S.X.M. acknowledges support from National Science Foundation (NSF CMMI 1824816) through the University of Pittsburgh. G.W. acknowledges support from National Science Foundation (NSF CMMI 1662615). C.W. was supported by the PNNL LDRD programme. This work was performed, in part, at the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by US Department of Energy, Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the US Department of Energy under contract DE-AC05-76RLO1830.

Author information

Affiliations

Authors

Contributions

S.X.M. conceived the experiment. Y.H. carried out the TEM experiments under the direction of S.X.M. and C.W., D.S., Y.H. and X.W. analysed the data. Z.L. and G.W. performed the computational simulations and theoretical analysis. D.S., Y.H., X.W., L.Z. and S.X.M. wrote the manuscript. All the authors contributed to the revision of the manuscript.

Corresponding authors

Correspondence to Chongmin Wang, Guofeng Wang or Scott X. Mao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Michael Moseler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–9, Tables 1 and 2, and Video Captions 1–4.

Supplementary Video 1

In situ HRTEM observation of interlayer mediated low friction between W and Au asperities under low normal loads.

Supplementary Video 2

In situ HRTEM observation of interlayer mediated low friction between W and Au asperities under low normal loads.

Supplementary Video 3

In situ HRTEM observation of the high friction between W and Au asperities without the loosely packed interlayer.

Supplementary Video 4

In situ HRTEM observation of the metastable Au clusters resulting from the interlayer and their relaxation into ordered layers on the W asperity surface.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Y., She, D., Liu, Z. et al. Atomistic observation on diffusion-mediated friction between single-asperity contacts. Nat. Mater. (2021). https://doi.org/10.1038/s41563-021-01091-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing