Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Porous materials for carbon dioxide separations

Abstract

Global investment in counteracting climate change has galvanized increasing interest in carbon capture and sequestration (CCS) as a versatile emissions mitigation technology. As decarbonization efforts accelerate, CCS can target the emissions of large point-source emitters, such as coal- or natural gas-fired power plants, while also supporting the production of renewable or low-carbon fuels. Furthermore, CCS can enable decarbonization of difficult-to-abate industrial processes and can support net CO2 removal from the atmosphere through bioenergy coupled with CCS or direct air capture. Here we review the development of porous materials as next-generation sorbents for CO2 capture applications. We focus on stream- and sector-specific challenges while highlighting case studies within the context of the rapidly shifting energy landscape. We conclude with a discussion of key needs from the materials community to expand deployment of carbon capture technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Emission sources and capture strategies.
Fig. 2: Illustrative examples of adsorbent classes discussed in this work.
Fig. 3: Carbon capture configurations.
Fig. 4: Minimum work versus CO2 concentration.

Similar content being viewed by others

References

  1. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  2. CO2 Emissions from Fuel Combustion 2019 (International Energy Agency, 2019).

  3. IPCC Special Report on Global warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018); http://www.ipcc.ch/report/sr15/

  4. Bui, M. et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1076 (2018).

    Article  CAS  Google Scholar 

  5. Boot-Handford, M. E. et al. Carbon capture and storage update. Energy Environ. Sci. 7, 130–189 (2014).

    Article  CAS  Google Scholar 

  6. Rochelle, G. T. in Absorption-Based Post-Combustion Capture of Carbon Dioxide (ed. Feron, P. H. M.) 35–67 (Woodhead Publishing, 2016); https://doi.org/10.1016/B978-0-08-100514-9.00003-2

  7. Facilities Database (Global CCS Institute, 2021); https://co2re.co/FacilityData

  8. The Global Status of CCS: 2020 (Global CCS Institute, 2020); https://www.globalccsinstitute.com/resources/global-status-report/

  9. Cost and Performance Baseline for Fossil Energy Plants. Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity. Revision 3 (US Department of Energy, National Energy Technology Laboratory, 2015).

  10. Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A. & Jones, C. W. Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016).

    Article  CAS  Google Scholar 

  11. Dutcher, B., Fan, M. & Russell, A. G. Amine-based CO2 capture technology development from the beginning of 2013—a review. ACS Appl. Mater. Interfaces 7, 2137–2148 (2015).

    Article  CAS  Google Scholar 

  12. Bhown, A. S. & Freeman, B. C. Analysis and status of post-combustion carbon dioxide capture technologies. Environ. Sci. Technol. 45, 8624–8632 (2011).

    Article  CAS  Google Scholar 

  13. Heldebrant, D. J. et al. Water-lean solvents for post-combustion CO2 capture: fundamentals, uncertainties, opportunities, and outlook. Chem. Rev. 117, 9594–9624 (2017).

    Article  CAS  Google Scholar 

  14. Du, N., Park, H. B., Dal-Cin, M. M. & Guiver, M. D. Advances in high permeability polymeric membrane materials for CO2 separations. Energy Environ. Sci. 5, 7306–7322 (2012).

    Article  CAS  Google Scholar 

  15. Wang, S., Yan, S., Ma, X. & Gong, J. Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy Environ. Sci. 4, 3805–3819 (2011).

    Article  CAS  Google Scholar 

  16. Vericella, J. J. et al. Encapsulated liquid sorbents for carbon dioxide capture. Nat. Commun. 6, 6124 (2015).

    Article  CAS  Google Scholar 

  17. Choi, S., Drese, J. H. & Jones, C. W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2, 796–854 (2009).

    Article  CAS  Google Scholar 

  18. Lin, L.-C. et al. In silico screening of carbon-capture materials. Nat. Mater. 11, 633–641 (2012).

    Article  CAS  Google Scholar 

  19. Ruthven, D. M. Principles of Adsorption and Adsorption Processes (John Wiley & Sons, 1984).

  20. Creamer, A. E. & Gao, B. Carbon-based adsorbents for postcombustion CO2 capture: a critical review. Environ. Sci. Technol. 50, 7276–7289 (2016).

    Article  CAS  Google Scholar 

  21. Mason, J. A. et al. Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. J. Am. Chem. Soc. 137, 4787–4803 (2015).

    Article  CAS  Google Scholar 

  22. Kulprathipanja, S. Zeolites in Industrial Separation and Catalysis (John Wiley & Sons, 2010).

  23. Cheetham, A. K., Férey, G. & Loiseau, T. Open-framework inorganic materials. Angew. Chem. Int. Ed. 38, 3268–3292 (1999).

    Article  CAS  Google Scholar 

  24. Huck, J. M. et al. Evaluating different classes of porous materials for carbon capture. Energy Environ. Sci. 7, 4132–4146 (2014).

    Article  CAS  Google Scholar 

  25. Bae, T.-H. et al. Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture. Energy Env. Sci. 6, 128–138 (2013).

    Article  CAS  Google Scholar 

  26. Cheung, O. & Hedin, N. Zeolites and related sorbents with narrow pores for CO2 separation from flue gas. RSC Adv. 4, 14480–14494 (2014).

    Article  CAS  Google Scholar 

  27. Brandani, F. & Ruthven, D. M. The effect of water on the adsorption of CO2 and C3H8 on type X zeolites. Ind. Eng. Chem. Res. 43, 8339–8344 (2004).

    Article  CAS  Google Scholar 

  28. Li, G. et al. Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption 14, 415–422 (2008).

    Article  CAS  Google Scholar 

  29. Lee, K. B. & Sircar, S. Removal and recovery of compressed CO2 from flue gas by a novel thermal swing chemisorption process. AIChE J. 54, 2293–2302 (2008).

    Article  CAS  Google Scholar 

  30. Bollini, P., Didas, S. A. & Jones, C. W. Amine-oxide hybrid materials for acid gas separations. J. Mater. Chem. 21, 15100–15120 (2011).

    Article  CAS  Google Scholar 

  31. Foo, G. S. et al. Elucidation of surface species through in situ FTIR spectroscopy of carbon dioxide adsorption on amine‐grafted SBA‐15. ChemSusChem 10, 266–276 (2017).

    Article  CAS  Google Scholar 

  32. Bollini, P., Choi, S., Drese, J. H. & Jones, C. W. Oxidative degradation of aminosilica adsorbents relevant to postcombustion CO2 capture. Energy Fuels 25, 2416–2425 (2011).

    Article  CAS  Google Scholar 

  33. Zeng, Y., Zou, R. & Zhao, Y. Covalent organic frameworks for CO2 capture. Adv. Mater. 28, 2855–2873 (2016).

    Article  CAS  Google Scholar 

  34. Zou, L. et al. Porous organic polymers for post-combustion carbon capture. Adv. Mater. 29, 1700229 (2017).

    Article  CAS  Google Scholar 

  35. Tian, Y. & Zhu, G. Porous aromatic frameworks (PAFs). Chem. Rev. 120, 8934–8986 (2020).

    Article  CAS  Google Scholar 

  36. Slater, A. G. & Cooper, A. I. Function-led design of new porous materials. Science 348, aaa8075 (2015).

    Article  CAS  Google Scholar 

  37. Li, J.-R., Kuppler, R. J. & Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    Article  CAS  Google Scholar 

  38. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  CAS  Google Scholar 

  39. Liu, J. et al. CO2/H2O adsorption equilibrium and rates on metal−organic frameworks: HKUST-1 and Ni/DOBDC. Langmuir 26, 14301–14307 (2010).

    Article  CAS  Google Scholar 

  40. Lin, Y., Kong, C. & Chen, L. Amine-functionalized metal–organic frameworks: structure, synthesis and applications. RSC Adv. 6, 32598–32614 (2016).

    Article  CAS  Google Scholar 

  41. Emerson, A. J., Chahine, A., Batten, S. R. & Turner, D. R. Synthetic approaches for the incorporation of free amine functionalities in porous coordination polymers for enhanced CO2 sorption. Coord. Chem. Rev. 365, 1–22 (2018).

    Article  CAS  Google Scholar 

  42. Chanut, N. et al. Screening the effect of water vapour on gas adsorption performance: application to CO2 capture from flue gas in metal–organic frameworks. ChemSusChem 10, 1543–1553 (2017).

    Article  CAS  Google Scholar 

  43. Nguyen, J. G. & Cohen, S. M. Moisture-resistant and superhydrophobic metal−organic frameworks obtained via postsynthetic modification. J. Am. Chem. Soc. 132, 4560–4561 (2010).

    Article  CAS  Google Scholar 

  44. Burtch, N. C., Jasuja, H. & Walton, K. S. Water stability and adsorption in metal–organic frameworks. Chem. Rev. 114, 10575–10612 (2014).

    Article  CAS  Google Scholar 

  45. Rubio-Martinez, M. et al. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 46, 3453–3480 (2017).

    Article  CAS  Google Scholar 

  46. DeWitt, S. J. A. et al. Critical comparison of structured contactors for adsorption-based gas separations. Annu. Rev. Chem. Biomol. Eng. 9, 129–152 (2018).

    Article  Google Scholar 

  47. IPCC 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Vol. 2 Energy (eds Eggleston, S. et al.) (IGES, 2006); https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html

  48. McDonald, T. M. et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056–7065 (2012).

    Article  CAS  Google Scholar 

  49. McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal–organic frameworks. Nature 519, 303–308 (2015).

    Article  CAS  Google Scholar 

  50. Milner, P. J. et al. A diaminopropane-appended metal–organic framework enabling efficient CO2 capture from coal flue gas via a mixed adsorption mechanism. J. Am. Chem. Soc. 139, 13541–13553 (2017).

    Article  CAS  Google Scholar 

  51. Liao, P.-Q. et al. Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gas. Energy Environ. Sci. 8, 1011–1016 (2015).

    Article  CAS  Google Scholar 

  52. Flaig, R. W. et al. The chemistry of CO2 capture in an amine-functionalized metal–organic framework under dry and humid conditions. J. Am. Chem. Soc. 139, 12125–12128 (2017).

    Article  CAS  Google Scholar 

  53. Xu, X., Song, C., Miller, B. G. & Scaroni, A. W. Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41. Ind. Eng. Chem. Res. 44, 8113–8119 (2005).

    Article  CAS  Google Scholar 

  54. Kim, C., Cho, H. S., Chang, S., Cho, S. J. & Choi, M. An ethylenediamine-grafted Y zeolite: a highly regenerable carbon dioxide adsorbent via temperature swing adsorption without urea formation. Energy Environ. Sci. 9, 1803–1811 (2016).

    Article  CAS  Google Scholar 

  55. Jadhav, P. D. et al. Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures. Energy Fuels 21, 3555–3559 (2007).

    Article  CAS  Google Scholar 

  56. Fisher, J. C., Tanthana, J. & Chuang, S. S. C. Oxide‐supported tetraethylenepentamine for CO2 capture. Environ. Prog. Sustain. Energy 28, 589–598 (2009).

    Article  CAS  Google Scholar 

  57. Su, F., Lu, C., Kuo, S.-C. & Zeng, W. Adsorption of CO2 on amine-functionalized Y-type zeolites. Energy Fuels 24, 1441–1448 (2010).

    Article  CAS  Google Scholar 

  58. Nguyen, T. H., Kim, S., Yoon, M. & Bae, T.-H. Hierarchical zeolites with amine‐functionalized mesoporous domains for carbon dioxide capture. ChemSusChem 9, 455–461 (2016).

    Article  CAS  Google Scholar 

  59. Webley, P. A. & Danaci, D. in Carbon Capture and Storage (eds Bui, M. & Mac Dowell, N.) 106–167 (Royal Society of Chemistry, 2019); https://doi.org/10.1039/9781788012744-00106

  60. Kolle, J. M., Fayaz, M. & Sayari, A. Understanding the effect of water on CO2 adsorption. Chem. Rev. https://doi.org/10.1021/acs.chemrev.0c00762 (2021).

  61. Boyd, P. G. et al. Data-driven design of metal–organic frameworks for wet flue gas CO2 capture. Nature 576, 253–256 (2019).

    Article  CAS  Google Scholar 

  62. Forse, A. C. & Milner, P. J. New chemistry for enhanced carbon capture: beyond ammonium carbamates. Chem. Sci. 12, 508–516 (2021).

    Article  CAS  Google Scholar 

  63. Rezaei, F. & Jones, C. W. Stability of supported amine adsorbents to SO2 and NOx in postcombustion CO2 capture. 1. Single-component adsorption. Ind. Eng. Chem. Res. 52, 12192–12201 (2013).

    Article  CAS  Google Scholar 

  64. Rezaei, F. & Jones, C. W. Stability of supported amine adsorbents to SO2 and NOx in postcombustion CO2 capture. 2. Multicomponent adsorption. Ind. Eng. Chem. Res. 53, 12103–12110 (2014).

    Article  CAS  Google Scholar 

  65. Sjostrom, S. & Krutka, H. Evaluation of solid sorbents as a retrofit technology for CO2 capture. Fuel 89, 1298–1306 (2010).

    Article  CAS  Google Scholar 

  66. Uyanga, I. J. & Idem, R. O. Studies of SO2- and O2-induced degradation of aqueous MEA during CO2 capture from power plant flue gas streams. Ind. Eng. Chem. Res. 46, 2558–2566 (2007).

    Article  CAS  Google Scholar 

  67. Bhattacharyya, S. et al. Acid gas stability of zeolitic imidazolate frameworks: generalized kinetic and thermodynamic characteristics. Chem. Mater. 30, 4089–4101 (2018).

    Article  CAS  Google Scholar 

  68. TDA Research, Inc. Sorbent-based Post-Combustion CO2 Slipstream Testing (National Energy Technology Laboratory, 2020); https://www.netl.doe.gov/projects/files/FE0012870.pdf

  69. Rouf, S. A. & Eić, M. Adsorption of SO2 from wet mixtures on hydrophobic zeolites. Adsorption 4, 25–33 (1998).

    Article  CAS  Google Scholar 

  70. Sjostrom, S., Durham, M., Bustard, C. J. & Martin, C. Activated carbon injection for mercury control: overview. Fuel 89, 1320–1322 (2010).

    Article  CAS  Google Scholar 

  71. Siegelman, R. L., Milner, P. J., Kim, E. J., Weston, S. C. & Long, J. R. Challenges and opportunities for adsorption-based CO2 capture from natural gas combined cycle emissions. Energy Environ. Sci. 12, 2161–2173 (2019).

    Article  CAS  Google Scholar 

  72. World Energy Outlook 2018 (International Energy Agency, 2018); https://doi.org/10.1787/weo-2018-en

  73. International Energy Outlook 2017 (Energy Information Administration, US Department of Energy, 2017); https://www.eia.gov/outlooks/ieo/

  74. Pang, S. H., Lee, L.-C., Sakwa-Novak, M. A., Lively, R. P. & Jones, C. W. Design of aminopolymer structure to enhance performance and stability of CO2 sorbents: poly(propylenimine) vs poly(ethylenimine). J. Am. Chem. Soc. 139, 3627–3630 (2017).

    Article  CAS  Google Scholar 

  75. Min, K., Choi, W., Kim, C. & Choi, M. Oxidation-stable amine-containing adsorbents for carbon dioxide capture. Nat. Commun. 9, 726 (2018).

    Article  CAS  Google Scholar 

  76. Siegelman, R. L. et al. Water enables efficient CO2 capture from natural gas flue emissions in an oxidation-resistant diamine-appended metal–organic framework. J. Am. Chem. Soc. 141, 13171–13186 (2019).

    Article  CAS  Google Scholar 

  77. Biomass Energy and Carbon Capture and Storage (BECCS): Unlocking Negative Emissions (John Wiley & Sons, 2018).

  78. Kemper, J. Biomass and carbon dioxide capture and storage: a review. Int. J. Greenh. Gas Control 40, 401–430 (2015).

    Article  CAS  Google Scholar 

  79. Holmes, H. E., Lively, R. P. & Realff, M. J. Defining targets for adsorbent material performance to enable viable BECCS Processes. JACS Au 1, 795–806 (2021).

    Article  CAS  Google Scholar 

  80. Rosa, L., Sanchez, D. L., Realmonte, G., Baldocchi, D. & D’Odorico, P. The water footprint of carbon capture and storage technologies. Renew. Sustain. Energy Rev. 138, 110511 (2021).

    Article  CAS  Google Scholar 

  81. Petersson, A. & Wellinger, A. Biogas Upgrading Technologies—developments and Innovations (IEA Bioenergy, 2009); https://www.ieabioenergy.com/wp-content/uploads/2009/10/upgrading_rz_low_final.pdf

  82. Rufford, T. E. et al. The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies. J. Pet. Sci. Eng. 94, 123–154 (2012).

    Article  CAS  Google Scholar 

  83. Schweigkofler, M. & Niessner, R. Removal of siloxanes in biogases. J. Hazard. Mater. 83, 183–196 (2001).

    Article  CAS  Google Scholar 

  84. Shang, J. et al. Discriminative separation of gases by a ‘molecular trapdoor’ mechanism in chabazite zeolites. J. Am. Chem. Soc. 134, 19246–19253 (2012).

    Article  CAS  Google Scholar 

  85. Braun, E. et al. High-throughput computational screening of nanoporous adsorbents for CO2 capture from natural gas. Mol. Syst. Des. Eng. 1, 175–188 (2016).

    Article  CAS  Google Scholar 

  86. Chaemchuen, S., Kabir, N. A., Zhou, K. & Verpoort, F. Metal–organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy. Chem. Soc. Rev. 42, 9304–9332 (2013).

    Article  CAS  Google Scholar 

  87. Belmabkhout, Y. et al. Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity. Nat. Energy 3, 1059–1066 (2018).

    Article  CAS  Google Scholar 

  88. Joshi, J. N. et al. Probing metal–organic framework design for adsorptive natural gas purification. Langmuir 34, 8443–8450 (2018).

    Article  CAS  Google Scholar 

  89. Quan, W., Wang, X. & Song, C. Selective removal of H2S from biogas using solid amine-based ‘molecular basket’ sorbent. Energy Fuels 31, 9517–9528 (2017).

    Article  CAS  Google Scholar 

  90. Kuznicki, S. M. et al. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature 412, 720–724 (2001).

    Article  CAS  Google Scholar 

  91. Technology Roadmap—Carbon Capture and Storage in Industrial Applications (International Energy Agency and United Nations Industrial Development Organization, 2011); https://www.unido.org/sites/default/files/2011-09/CCS_Industry_Roadmap_WEB_2.pdf

  92. Leeson, D., Ramirez, A. & Mac Dowell, N. in Carbon Capture and Storage (eds Bui, M. & Mac Dowell, N.) 296–314 (Royal Society of Chemistry, 2019); https://doi.org/10.1039/9781788012744-00296

  93. Leeson, D., Mac Dowell, N., Shah, N., Petit, C. & Fennell, P. S. A techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. Int. J. Greenh. Gas Control 61, 71–84 (2017).

    Article  CAS  Google Scholar 

  94. McQueen, N., Woodall, C. M., Psarras, P. & Wilcox, J. in Carbon Capture and Storage (eds Bui, M. & Mac Dowell, N.) 353–391 (Royal Society of Chemistry, 2019); https://doi.org/10.1039/9781788012744-00353

  95. Hills, T. P., Sceats, M. G. & Fennell, P. S. in Carbon Capture and Storage (eds Bui, M. & Mac Dowell, N.) 315–352 (Royal Society of Chemistry, 2019); https://doi.org/10.1039/9781788012744-00315

  96. Nelson, T. O. et al. Solid sorbent CO2 capture technology evaluation and demonstration at Norcem’s cement plant in Brevik, Norway. Energy Proc. 63, 6504–6516 (2014).

    Article  CAS  Google Scholar 

  97. Edwards, P. LafargeHolcim and Svante: preparing for the future carbon economy. Global Cement Magazine 68, 20–24 (2020).

    Google Scholar 

  98. Taylor, J. M., Mah, R. K. & Shimizu, G. K. H. Synthesis of zinc MOF materials. World Patent WO2019204934A1 (2019).

  99. Dlugokencky, E. & Tans, P. Trends in Atmospheric Carbon Dioxide (ESRL Global Monitoring Division, Global Greenhouse Gas Reference Network, 2021); https://gml.noaa.gov/ccgg/trends/global.html

  100. Wilcox, J., Haghpanah, R., Rupp, E. C., He, J. & Lee, K. Advancing adsorption and membrane separation processes for the gigaton carbon capture challenge. Annu. Rev. Chem. Biomol. Eng. 5, 479–505 (2014).

    Article  CAS  Google Scholar 

  101. Lu, W., Sculley, J. P., Yuan, D., Krishna, R. & Zhou, H.-C. Carbon dioxide capture from air using amine-grafted porous polymer networks. J. Phys. Chem. C 117, 4057–4061 (2013).

    Article  CAS  Google Scholar 

  102. Liu, J., Wei, Y. & Zhao, Y. Trace carbon dioxide capture by metal–organic frameworks. ACS Sustain. Chem. Eng. 7, 82–93 (2019).

    Article  CAS  Google Scholar 

  103. Pang, S. H., Lively, R. P. & Jones, C. W. Oxidatively-stable linear poly(propylenimine)-containing adsorbents for CO2 capture from ultradilute streams. ChemSusChem 11, 2628–2637 (2018).

    Article  CAS  Google Scholar 

  104. Shi, X. et al. Moisture-driven CO2 sorbents. Joule 4, 1823–1837 (2020).

    Article  CAS  Google Scholar 

  105. Li, W. et al. Steam-stripping for regeneration of supported amine-based CO2 adsorbents. ChemSusChem 3, 899–903 (2010).

    Article  CAS  Google Scholar 

  106. Sakwa-Novak, M. A. & Jones, C. W. Steam induced structural changes of a poly(ethylenimine) impregnated γ-alumina sorbent for CO2 extraction from ambient air. ACS Appl. Mater. Interfaces 6, 9245–9255 (2014).

    Article  CAS  Google Scholar 

  107. Min, K., Choi, W. & Choi, M. Macroporous silica with thick framework for steam-stable and high-performance poly(ethyleneimine)/silica CO2 adsorbent. ChemSusChem 10, 2518–2526 (2017).

    Article  CAS  Google Scholar 

  108. Potter, M. E., Lee, J. J., Darunte, L. A. & Jones, C. W. Exploring steam stability of mesoporous alumina species for improved carbon dioxide sorbent design. J. Mater. Sci. 54, 7563–7575 (2019).

    Article  CAS  Google Scholar 

  109. Kim, E. J. et al. Cooperative carbon capture and steam regeneration with tetraamine-appended metal–organic frameworks. Science 369, 392–396 (2020).

    Article  CAS  Google Scholar 

  110. Sujan, A. R., Pang, S. H., Zhu, G., Jones, C. W. & Lively, R. P. Direct CO2 capture from air using poly(ethylenimine)-loaded polymer/silica fiber sorbents. ACS Sustain. Chem. Eng. 7, 5264–5273 (2019).

    Article  CAS  Google Scholar 

  111. Darunte, L. et al. Moving beyond adsorption capacity in design of adsorbents for CO2 capture from ultra-dilute feeds: kinetics of CO2 adsorption in materials with stepped isotherms. Ind. Eng. Chem. Res. 58, 366–377 (2019).

    Article  CAS  Google Scholar 

  112. Assen, N., von der, Voll, P., Peters, M. & Bardow, A. Life cycle assessment of CO2 capture and utilization: a tutorial review. Chem. Soc. Rev. 43, 7982–7994 (2014).

    Article  Google Scholar 

  113. Cuéllar-Franca, R. M. & Azapagic, A. Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J. CO2 Util. 9, 82–102 (2015).

    Article  CAS  Google Scholar 

  114. Deutz, S. & Bardow, A. Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption. Nat. Energy 6, 203–213 (2021).

    Article  CAS  Google Scholar 

  115. Sathre, R. & Masanet, E. Prospective life-cycle modeling of a carbon capture and storage system using metal–organic frameworks for CO2 capture. RSC Adv. 3, 4964–4975 (2013).

    Article  CAS  Google Scholar 

  116. Iacomi, P. & Llewellyn, P. L. Data mining for binary separation materials in published adsorption isotherms. Chem. Mater. 32, 982–991 (2020).

    Article  CAS  Google Scholar 

  117. Hu, Z., Wang, Y., Shah, B. B. & Zhao, D. CO2 Capture in metal–organic framework adsorbents: an engineering perspective. Adv. Sustain. Syst. 3, 1800080 (2019).

    Article  CAS  Google Scholar 

  118. DeWitt, S. J. A., Rubiera Landa, H. O., Kawajiri, Y., Realff, M. & Lively, R. P. Development of phase-change-based thermally modulated fiber sorbents. Ind. Eng. Chem. Res. 58, 5768–5776 (2019).

    Article  CAS  Google Scholar 

  119. Sadiq, M. M. et al. Engineered porous nanocomposites that deliver remarkably low carbon capture energy costs. Cell Rep. Phys. Sci. 1, 100070 (2020).

    Article  Google Scholar 

  120. Park, J., Lively, R. P. & Sholl, D. S. Establishing upper bounds on CO2 swing capacity in sub-ambient pressure swing adsorption via molecular simulation of metal–organic frameworks. J. Mater. Chem. A 5, 12258–12265 (2017).

    Article  CAS  Google Scholar 

  121. Miller, D. C. et al. Carbon capture simulation initiative: a case study in multiscale modeling and new challenges. Annu. Rev. Chem. Biomol. Eng. 5, 301–323 (2014).

    Article  CAS  Google Scholar 

  122. Lashaki, M. J., Khiavi, S. & Sayari, A. Stability of amine-functionalized CO2 adsorbents: a multifaceted puzzle. Chem. Soc. Rev. 48, 3320–3405 (2019).

    Article  Google Scholar 

  123. Zevenhoven, R. Control of Pollutants in Flue Gases and Fuel Gases (Helsinki Univ. Technology, 2001).

  124. Song, C. et al. in Studies in Surface Science and Catalysis Vol. 153 (eds Park, S.-E. et al.) 315–322 (Elsevier, 2004).

  125. Metz, B., Davidson, O., de Coninck, H., Loos, M. & Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage (IPCC, 2005); https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/

  126. Yang, L., Ge, X., Wan, C., Yu, F. & Li, Y. Progress and perspectives in converting biogas to transportation fuels. Renew. Sustain. Energy Rev. 40, 1133–1152 (2014).

    Article  CAS  Google Scholar 

  127. Arasto, A., Tsupari, E., Kärki, J., Pisilä, E. & Sorsamäki, L. Post-combustion capture of CO2 at an integrated steel mill—Part I: technical concept analysis. Int. J. Greenh. Gas Control 16, 271–277 (2013).

    Article  CAS  Google Scholar 

  128. Cement Kiln Flue Gas Recovery Scrubber Project (US Department of Energy, National Energy Technology Laboratory, 2001); https://doi.org/10.2172/789334

  129. Thambimuthu, K., Davison, J. & Gupta, M. in Workshop on Carbon Dioxide Capture and Storage: Proceedings 31–52 (IPCC, ECN, 2002); https://archive.ipcc.ch/pdf/supporting-material/ipcc-workshop-proceedings-cdcs-regina-2002.pdf

  130. CO2 Capture in the Cement Industry (IEA Greenhouse Gas R&D Programme, 2008); https://ieaghg.org/docs/General_Docs/Reports/2008-3.pdf

  131. CO2 Abatement in Oil Refineries: Fired Heaters (IEA Greenhouse Gas R&D Programme, 2000); https://ieaghg.org/docs/General_Docs/Reports/Ph3_31%20Oil%20refinery%20fired%20heaters.PDF

  132. Output-Based Regulations: A Handbook for Air Regulators (US Environmental Protection Agency Combined Heat and Power Partnership, 2014)l https://www.epa.gov/sites/production/files/2015-07/documents/output-based_regulations_a_handbook_for_air_regulators.pdf

  133. Baukal, C. E. & Eleazer, P. B. Quantifying NOx for industrial combustion processes. J. Air Waste Manag. Assoc. 48, 52–58 (1998).

    Article  CAS  Google Scholar 

  134. Parrish, W. R. & Kidnay, A. J. Fundamentals of Natural Gas Processing (CRC Press, 2006).

  135. Palmer, J. C. et al. Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics. Carbon 48, 1116–1123 (2010).

    Article  CAS  Google Scholar 

  136. Baerlocher, C. H. & McCusker, L. B. Database Zeolite Structures (IZA-SC, 2007); https://america.iza-structure.org/IZA-SC/framework.php?STC=FAU

  137. Ugliengo, P. et al. Realistic models of hydroxylated amorphous silica surfaces and MCM-41 mesoporous material simulated by large-scale periodic B3LYP calculations. Adv. Mater. 20, 4579–4583 (2008).

    Article  CAS  Google Scholar 

  138. Thomas, J. M. H. & Trewin, A. Amorphous PAF-1: guiding the rational design of ultraporous materials. J. Phys. Chem. C 118, 19712–19722 (2014).

    Article  CAS  Google Scholar 

  139. Férey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005).

    Article  CAS  Google Scholar 

  140. Enhanced Actions on Climate Change: China’s Intended Nationally Determined Contributions (Department of Climate Change, National Development and Reform Commission, 2016); https://www4.unfccc.int/sites/ndcstaging/Pages/Party.aspx?party=CHN&prototype=1

  141. The United States of America Nationally Determined Contribution. Reducing Greenhouse Gases in the United States: A 2030 Emissions Target (US National Climate Task Force, 2021); https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/United%20States%20of%20America%20First/United%20States%20NDC%20April%2021%202021%20Final.pdf

  142. Phadke, A. et al. 2035 Report: Renewable Energy Costs & Our Clean Electricity Future (Goldman School of Public Policy, Univ. California, Berkeley, 2020); https://www.2035report.com/electricity/

  143. Aggarwal, S. & O’Boyle, M. Rewiring the U.S. for Economic Recovery (Energy Innovation Policy & Technology LLC, 2020); https://energyinnovation.org/publication/rewiring-the-u-s-for-economic-recovery/

  144. Larson, E. et al. Net-Zero America: Potential Pathways, Infrastructure, and Impacts (Princeton Univ., 2020); https://netzeroamerica.princeton.edu/the-report

  145. Romankiewicz, J., Bottorff, C., Stokes, L. C., Pomerantz, D. & Kasper, M. The Dirty Truth About Utility Climate Pledges (Sierra Club, 2021); https://coal.sierraclub.org/the-problem/dirty-truth-greenwashing-utilities

  146. Becattini, V., Gabrielli, P. & Mazzotti, M. Role of carbon capture, storage, and utilization to enable a net-zero-CO2-emissions aviation sector. Ind. Eng. Chem. Res. 60, 6848–6862 (2021).

    Article  CAS  Google Scholar 

  147. Friedmann, S. J., Fan, Z. & Tang, K. Low-Carbon Heat Solutions for Heavy Industry: Sources, Options, and Costs Today (The Center for Global Energy Policy, School of International and Public Affairs, Columbia Univ., 2019); https://www.energypolicy.columbia.edu/research/report/low-carbon-heat-solutions-heavy-industry-sources-options-and-costs-today

  148. Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    Article  CAS  Google Scholar 

  149. Rissman, J. et al. Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. Appl. Energy 266, 114848 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DE-SC0019992. We thank K. R. Meihaus for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Long.

Ethics declarations

Competing interests

The authors declare the following competing interests: J.R.L. has a financial interest in Mosaic Materials, Inc., a start-up company working to commercialize metal–organic frameworks for gas separations. J.R.L. and R.L.S. are listed as co-inventors on patents and patent applications encompassing the diamine-appended Mg2(dobpdc) metal–organic frameworks referenced herein (J.R.L., US10137430B2; J.R.L. and R.L.S., US10780388B2 and US20210129071A1). J.R.L., R.L.S. and E.J.K. are listed as co-inventors on a patent pertaining to the tetraamine-appended metal–organic frameworks referenced herein (US11014067B2).

Additional information

Peer review information Nature Materials thanks Christian Serre and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siegelman, R.L., Kim, E.J. & Long, J.R. Porous materials for carbon dioxide separations. Nat. Mater. 20, 1060–1072 (2021). https://doi.org/10.1038/s41563-021-01054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01054-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing