Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unconventional chiral charge order in kagome superconductor KV3Sb5

Abstract

Intertwining quantum order and non-trivial topology is at the frontier of condensed matter physics1,2,3,4. A charge-density-wave-like order with orbital currents has been proposed for achieving the quantum anomalous Hall effect5,6 in topological materials and for the hidden phase in cuprate high-temperature superconductors7,8. However, the experimental realization of such an order is challenging. Here we use high-resolution scanning tunnelling microscopy to discover an unconventional chiral charge order in a kagome material, KV3Sb5, with both a topological band structure and a superconducting ground state. Through both topography and spectroscopic imaging, we observe a robust 2 × 2 superlattice. Spectroscopically, an energy gap opens at the Fermi level, across which the 2 × 2 charge modulation exhibits an intensity reversal in real space, signalling charge ordering. At the impurity-pinning-free region, the strength of intrinsic charge modulations further exhibits chiral anisotropy with unusual magnetic field response. Theoretical analysis of our experiments suggests a tantalizing unconventional chiral charge density wave in the frustrated kagome lattice, which can not only lead to a large anomalous Hall effect with orbital magnetism, but also be a precursor of unconventional superconductivity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Superlattice modulation observed via topographic imaging.
Fig. 2: Charge modulation observed via spectroscopic imaging.
Fig. 3: Magnetic response of the chiral charge order.
Fig. 4: Impact of time-reversal broken chiral charge order on the electronic structure.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Information. Additional data are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Yin, J.-X., Pan, S. H. & Hasan, M. Z. Probing topological quantum matter with scanning tunnelling microscopy. Nat. Rev. Phys. 3, 249–263 (2021).

    Article  Google Scholar 

  4. 4.

    Hasan, M. Z. et al. Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks. Phys. Scr. 2015, 014001 (2015).

    Article  Google Scholar 

  5. 5.

    Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

    CAS  Article  Google Scholar 

  6. 6.

    Raghu, S., Qi, X.-L., Honerkamp, C. & Zhang, S.-C. Topological Mott insulators. Phys. Rev. Lett. 100, 156401 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997).

    CAS  Article  Google Scholar 

  8. 8.

    Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001).

    Article  Google Scholar 

  9. 9.

    Xu, G., Lian, B. & Zhang, S.-C. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs2LiMn3F12. Phys. Rev. Lett. 115, 186802 (2015).

    Article  Google Scholar 

  10. 10.

    Yin, J.-X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020).

    CAS  Article  Google Scholar 

  11. 11.

    Yin, J.-X. et al. Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet. Nature 562, 91–95 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Yin, J.-X. et al. Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet. Nat. Phys. 15, 443–448 (2019).

    CAS  Article  Google Scholar 

  13. 13.

    Lin, Z. et al. Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagome lattices. Phys. Rev. Lett. 121, 096401 (2018).

    Article  Google Scholar 

  14. 14.

    Jiao, L. et al. Signatures for half-metallicity and nontrivial surface states in the kagome lattice Weyl semimetal Co3Sn2S2. Phys. Rev. B 99, 245158 (2019).

    CAS  Article  Google Scholar 

  15. 15.

    Guguchia, Z. et al. Tunable anomalous Hall conductivity through volume-wise magnetic competition in a topological kagome magnet. Nat. Commun. 11, 559 (2020).

    CAS  Article  Google Scholar 

  16. 16.

    Zhang, S. S. et al. Many-body resonance in a correlated topological kagome antiferromagnet. Phys. Rev. Lett. 125, 046501 (2020).

    Google Scholar 

  17. 17.

    Yin, J.-X. et al. Spin–orbit quantum impurity in a topological magnet. Nat. Commun. 11, 4415 (2020).

    CAS  Article  Google Scholar 

  18. 18.

    Yin, J.-X. et al. Fermion–boson many-body interplay in a frustrated kagome paramagnet. Nat. Commun. 11, 4003 (2020).

    CAS  Article  Google Scholar 

  19. 19.

    Xing, Y. et al. Localized spin–orbit polaron in magnetic Weyl semimetal Co3Sn2S2. Nat. Commun. 11, 5613 (2020).

    CAS  Article  Google Scholar 

  20. 20.

    Mielke, C. Nodeless kagome superconductivity in LaRu3Si2. Phys. Rev. Mater. 5, 034803 (2021).

    CAS  Article  Google Scholar 

  21. 21.

    Ortiz, B. R. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020).

    CAS  Article  Google Scholar 

  23. 23.

    Ortiz, B. R. et al. Superconductivity in the Z2 kagome metal KV3Sb5. Phys. Rev. Mater. 5, 034801 (2021).

    CAS  Article  Google Scholar 

  24. 24.

    Grüner, G. Density Waves in Solids (Addison-Wesley, 1994).

  25. 25.

    Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 23, 213001 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    Monceau, P. Electronic crystals: an experimental overview. Adv. Phys. 61, 325–581 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Spera, M. et al. Insight into the charge density wave gap from contrast inversion in topographic STM images. Phys. Rev. Lett. 125, 267603 (2020).

    CAS  Article  Google Scholar 

  28. 28.

    Yin, J.-X. et al. Orbital selectivity of layer resolved tunneling on iron-based superconductor Ba0.6K0.4Fe2As2. Phys. Rev. B 102, 054515 (2020).

    CAS  Article  Google Scholar 

  29. 29.

    Ishioka, J. et al. Chiral charge-density waves. Phys. Rev. Lett. 105, 176401 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    Xu, S. Y. et al. Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide. Nature 578, 545–549 (2020).

    CAS  Article  Google Scholar 

  31. 31.

    Xia, J. et al. Polar Kerr-effect measurements of the high-temperature YBa2Cu3O6+x superconductor: evidence for broken symmetry near the pseudogap temperature. Phys. Rev. Lett. 100, 127002 (2008).

    Article  Google Scholar 

  32. 32.

    Hosur, P., Kapitulnik, A., Kivelson, S., Orenstein, J. & Raghu, S. Kerr effect as evidence of gyrotropic order in the cuprates. Phys. Rev. B 91, 039908 (2015).

    Article  Google Scholar 

  33. 33.

    Kiesel, M. L. & Thomale, R. Sublattice interference in the kagome Hubbard model. Phys. Rev. B 86, 121105R (2012).

    Article  Google Scholar 

  34. 34.

    Wang, W.-S., Li, Z.-Z., Xiang, Y.-Y. & Wang, Q.-H. Competing electronic orders on kagome lattices at van Hove filling. Phys. Rev. B 87, 115135 (2013).

    Article  Google Scholar 

  35. 35.

    Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110, 126405 (2013).

    Article  Google Scholar 

  36. 36.

    Vanderbilt, D. Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge Univ. Press, 2018).

    Book  Google Scholar 

  37. 37.

    Volovik, G. E. Quantized Hall effect in superfluid helium-3 film. Phys. Lett. A 128, 277–279 (1988).

    CAS  Article  Google Scholar 

  38. 38.

    Shumiya, N. et al. Tunable chiral charge order in kagome superconductor RbV3Sb5. Preprint at https://arxiv.org/abs/2105.00550 (2021).

  39. 39.

    Wang, Z. et al. Anomalous transport and chiral charge order in kagome superconductor CsV3Sb5. Preprint at https://arxiv.org/abs/2105.04542 (2021).

Download references

Acknowledgements

We thank Q Wang for stimulating discussions. Experimental and theoretical work at Princeton University was supported by the Gordon and Betty Moore Foundation (GBMF4547 and GBMF9461; M.Z.H.). The material characterization is supported by the US Department of Energy under the Basic Energy Sciences programme (grant no. DOE/BES DE-FG-02-05ER46200). S.D.W. and B.R.O. acknowledge support from the University of California Santa Barbara Quantum Foundry, funded by the National Science Foundation (NSF DMR-1906325). Research reported here also made use of shared facilities of the Materials Research Science and Engineering Center (MRSEC) at University of California Santa Barbara (NSF DMR-1720256). B.R.O. also acknowledges support from the California NanoSystems Institute through the Elings fellowship programme. R.T. is funded by the Deutsche Forschungsgemeinschaft (German Research Foundation) through project ID 258499086 – SFB 1170 and through the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter (ct.qmat) project ID 390858490 – EXC 2147. T.N. acknowledges supports from the European Union’s Horizon 2020 research and innovation programme (ERC-StG-Neupert-757867-PARATOP). Work at Boston College was supported by the US Department of Energy, Basic Energy Sciences grant number DE-FG02-99ER45747. T.A.C. was supported by the National Science Foundation Graduate Research Fellowship Program under grant no. DGE-1656466. Research conducted at the Center for High Energy X-ray Sciences is supported by the National Science Foundation under award DMR-1829070. G.C. would like to acknowledge the support of the National Research Foundation, Singapore under its Fellowship Award (NRF-NRFF13-2021-0010) and the Nanyang Assistant Professorship grant from Nanyang Technological University. G.X. was supported by the National Key Research and Development Program of China (2018YFA0307000) and the National Natural Science Foundation of China (11874022).

Author information

Affiliations

Authors

Contributions

Y.-X.J., J.-X.Y. and N.S. conducted the STM experiments in consultation with M.Z.H.; B.R.O. and S.D.W. synthesized samples; B.R.O., J.R. and L.K. performed X-ray measurements; M.M.D., J.H., X.L., G.C., G.X., Z.W., R.T. and T.N. carried out the theoretical analysis in consultation with J.-X.Y. and M.Z.H.; Z.G., J.R., L.K., S.S.Z., I.B., Q.Z., M.S.H., T.A.C., D.M., M.L., Z.-J.C. and X.P.Y. contributed to the calibration of the measurement; Y.-X.J., J.-X.Y. and M.Z.H performed the data analysis and figure development and wrote the paper with contributions from all authors; M.Z.H. supervised the project. All authors discussed the results, interpretation and conclusion.

Corresponding authors

Correspondence to Jia-Xin Yin or M. Zahid Hasan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Marcel Franz, Erik van Heumen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, YX., Yin, JX., Denner, M.M. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. (2021). https://doi.org/10.1038/s41563-021-01034-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing