Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthetic Rashba spin–orbit system using a silicon metal-oxide semiconductor

Abstract

The spin–orbit interaction (SOI), mainly manifesting itself in heavy elements and compound materials, has been attracting much attention as a means of manipulating and/or converting a spin degree of freedom. Here, we show that a Si metal-oxide- semiconductor (MOS) heterostructure possesses Rashba-type SOI, although Si is a light element and has lattice inversion symmetry resulting in inherently negligible SOI in bulk form. When a strong gate electric field is applied to the Si MOS, we observe spin lifetime anisotropy of propagating spins in the Si through the formation of an emergent effective magnetic field due to the SOI. Furthermore, the Rashba parameter α in the system increases linearly up to 9.8 × 10−16 eV m−1 for a gate electric field of 0.5 V nm−1; that is, it is gate tuneable and the spin splitting of 0.6 μeV is relatively large. Our finding establishes a family of spin–orbit systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Device structure and basic charge and spin transport characteristics in a synthetic Rashba system made of Si MOS.
Fig. 2: Gate modulation of spin precession signals and spin lifetime anisotropy.
Fig. 3: Gate voltage dependence of the spin lifetime anisotropy.
Fig. 4: Physics behind the spin lifetime anisotropy, the Rashba SOI and the emergent effective magnetic field in the Si MOS, and the gate-tuneable Rashba parameter.

Data availability

Source data for the main paper figures are provided with this paper. Additional data are available from the corresponding authors on request.

References

  1. 1.

    Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    CAS  Article  Google Scholar 

  2. 2.

    Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Coherent spin manipulation without magnetic fields in strained semiconductors. Nature 427, 50–53 (2003).

    Article  Google Scholar 

  3. 3.

    Murakami, S., Nagaosa, N. & Zhang, S.-C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductor. Science 306, 1910–1913 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  7. 7.

    Otani, Y., Shiraishi, M., Oiwa, A., Saitoh, E. & Murakami, S. Spin conversion on the nanoscale. Nat. Phys. 13, 829–832 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Ganichev, S. D. et al. Spin-galvanic effect. Nature 417, 153–156 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    Rojas-Sanchez, J.-C. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 4, 2944 (2013).

    Article  Google Scholar 

  10. 10.

    Ast, C. R. et al. Giant spin splitting through surface alloying. Phys. Rev. Lett. 98, 186807 (2007).

    Article  Google Scholar 

  11. 11.

    Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 10, 521 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    de la Barrera, S. C. et al. Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 9, 1427 (2018).

    Article  Google Scholar 

  13. 13.

    Ganguly, A. et al. Thickness dependence of spin torque ferromagnetic resonance in Co75Fe25/Pt bilayer films. Appl. Phys. Lett. 104, 072405 (2014).

    Article  Google Scholar 

  14. 14.

    Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article  Google Scholar 

  15. 15.

    Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

    Article  Google Scholar 

  16. 16.

    Ghiasi, T. S., Ingla-Aynes, J., Kaverzin, A. A. & van Wees, B. Large proximity-induced spin lifetime anisotropy in transition-metal dichalcogenide/graphene heterostructures. Nano Lett. 17, 7528–7532 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Benitez, L. A. et al. Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature. Nat. Phys. 14, 303–308 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Safeer, C. K. et al. Room-temperature spin Hall effect in graphene/MoS2 van der Waals heterostructures. Nano Lett. 19, 1074–1082 (2019).

    CAS  Article  Google Scholar 

  19. 19.

    Benitez, L. A. et al. Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures. Nat. Mater. 19, 170–175 (2020).

    CAS  Article  Google Scholar 

  20. 20.

    Xu, J., Zhu, T., Luo, Y. K., Lu, Y.-M. & Kawakami, R. K. Strong and tunable spin-lifetime anisotropy in dual-gated bilayer graphene. Phys. Rev. Lett. 121, 127703 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Leutenantsmeyer, J. C., Ingla-Aynes, J., Fabian, J. & van Wees, B. J. Observation of spin-valley-coupling-induced large spin-lifetime anisotropy in bilayer graphene. Phys. Rev. Lett. 121, 127702 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Ohtsubo, Y. et al. Spin-polarized semiconductor surface states localized in subsurface layers. Phys. Rev. B 82, 201307(R) (2010).

    Article  Google Scholar 

  23. 23.

    Guillet, T. et al. Observation of large unidirectional Rashba magnetoresistance in Ge(111). Phys. Rev. Lett. 124, 027201 (2020).

    CAS  Article  Google Scholar 

  24. 24.

    Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nat. Mater. 7, 855–858 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    Chiba, D., Fukami, S., Shimamura, K., Ishiwata, N. & Ono, T. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat. Mater. 10, 853–856 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    Dushenko, S. et al. Tunable inverse spin Hall effect in nanometer-thick platinum films by ionic gating. Nat. Commun. 9, 3188 (2018).

    Article  Google Scholar 

  27. 27.

    Raes, B. et al. Determination of the spin-lifetime anisotropy in graphene using oblique spin precession. Nat. Commun. 7, 11444 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Sasaki, T. et al. Temperature dependence of spin diffusion length in silicon by Hanle-type spin precession. Appl. Phys. Lett. 96, 122101 (2010).

    Article  Google Scholar 

  29. 29.

    O’Brien, L. et al. Observation of and modelling of ferromagnetic contact-induced spin relaxation in Hanle spin precession measurements. Phys. Rev. B 94, 094431 (2016).

    Article  Google Scholar 

  30. 30.

    Rojas-Sanchez, J.-C. et al. In-plane and out-of-plane spin precession in lateral spin-valves. Appl. Phys. Lett. 102, 132408 (2013).

    Article  Google Scholar 

  31. 31.

    Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    CAS  Article  Google Scholar 

  32. 32.

    Konakov, A. A. et al. Lande factor of the conduction electrons in silicon: temperature dependence. J. Phys. Conf. Ser. 324, 012027 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported in part by the Japan Society for the Promotion of Science (JSPS) Research Fellow Program (grant no. 18J22869), JST-PRESTO ‘Information Carrier’ Program and a Grant-in-Aid for Scientific Research (S) ‘Semiconductor Spincurrentronics’ (grant no. 16H06330).

Author information

Affiliations

Authors

Contributions

M.S. and S.L. conceived the experiments. H.K., M.G., S.M. and Y.S. fabricated samples. S.L. and N.Y. collected data. S.L., R.O., E.S., Y.A. and M.S. analysed the results. M.S. and S.L. wrote the paper. All authors discussed the results.

Corresponding author

Correspondence to Masashi Shiraishi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Juan-Carlos Rojas-Sánchez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Refs. 1–5 and Discussion.

Source data

Source Data Fig. 1

Source data for Fig. 1

Source Data Fig. 2

Source data for Fig. 2

Source Data Fig. 3

Source data for Fig. 3

Source Data Fig. 4

Source data for Fig. 4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Koike, H., Goto, M. et al. Synthetic Rashba spin–orbit system using a silicon metal-oxide semiconductor. Nat. Mater. (2021). https://doi.org/10.1038/s41563-021-01026-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing