Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microstructural origin of locally enhanced CO2 electroreduction activity on gold

Subjects

Abstract

Understanding how the bulk structure of a material affects catalysis on its surface is critical to the development of actionable catalyst design principles. Bulk defects have been shown to affect electrocatalytic materials that are important for energy conversion systems, but the structural origins of these effects have not been fully elucidated. Here we use a combination of high-resolution scanning electrochemical cell microscopy and electron backscatter diffraction to visualize the potential-dependent electrocatalytic carbon dioxide \(({\mathrm{C}}{\mathrm{O}}_{2})\) electroreduction and hydrogen \(({{\mathrm{H}}_{2}})\) evolution activity on Au electrodes and probe the effects of bulk defects. Comparing colocated activity maps and videos to the underlying microstructure and lattice deformation supports a model in which CO2 electroreduction is selectively enhanced by surface-terminating dislocations, which can accumulate at grain boundaries and slip bands. Our results suggest that the deliberate introduction of dislocations into materials is a promising strategy for improving catalytic properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental approach for investigating microstructure effects in electrocatalysis at Au electrodes.
Fig. 2: Probing microstructure dependence of H2 evolution activity.
Fig. 3: Probing microstructure dependence of CO2 electroreduction activity.
Fig. 4: HR-EBSD mapping of area within Sample A that was scanned with SECCM, shown in Fig. 3.
Fig. 5: EBSD and SECCM mapping of a highly deformed region surrounding a 42° GB in Sample B.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are included within the paper and its Supplementary Information files. Source data are available from the corresponding authors upon reasonable request.

References

  1. Feng, X., Jiang, K., Fan, S. & Kanan, M. W. Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 137, 4606–4609 (2015).

    Article  CAS  Google Scholar 

  2. Feng, X., Jiang, K., Fan, S. & Kanan, M. W. A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent. Sci. 2, 169–174 (2016).

    Article  CAS  Google Scholar 

  3. Mariano, R. G., McKelvey, K., White, H. S. & Kanan, M. W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358, 1187–1192 (2017).

    Article  CAS  Google Scholar 

  4. Verdaguer-Casadevall, A. et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015).

    Article  CAS  Google Scholar 

  5. Lee, S. H. et al. Correlating oxidation state and surface area to activity from operando studies of copper CO electroreduction catalysts in a gas-fed device. ACS Catal. 10, 8000–8011 (2020).

    Article  CAS  Google Scholar 

  6. Xu, Z. et al. Dynamic restructuring induced Cu nanoparticles with ideal nanostructure for selective multi-carbon compounds production via carbon dioxide electroreduction. J. Catal. 383, 42–50 (2020).

    Article  CAS  Google Scholar 

  7. Humphreys, F. J. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—I. The basic model. Acta Mater. 45, 4231–4240 (1997).

    Article  CAS  Google Scholar 

  8. Humphreys, J., Rohrer, G. S. & Rollett, A. in Recrystallization and Related Annealing Phenomena 3rd edn, 145–197 (Elsevier, 2017).

  9. Engbæk, J., Schiøtz, J., Dahl-Madsen, B. & Horch, S. Atomic structure of screw dislocations intersecting the Au(111) surface: a combined scanning tunneling microscopy and molecular dynamics study. Phys. Rev. B 74, 195434 (2006).

    Article  Google Scholar 

  10. Chidsey, C. E. D., Loiacono, D. N., Sleator, T. & Nakahara, S. STM study of the surface morphology of gold on mica. Surf. Sci. 200, 45–66 (1988).

    Article  CAS  Google Scholar 

  11. Radetic, T., Lançon, F. & Dahmen, U. Chevron defect at the intersection of grain boundaries with free surfaces in Au. Phys. Rev. Lett. 89, 085502 (2002).

    Article  CAS  Google Scholar 

  12. Giela, T., Freindl, K., Spiridis, N. & Korecki, J. Au(111) films on W(110) studied by STM and LEED – uniaxial reconstruction, dislocations and Ag nanostructures. Appl. Surf. Sci. 312, 91–96 (2014).

    Article  CAS  Google Scholar 

  13. Morgenstern, K., Lægsgaard, E. & Besenbacher, F. STM study of step dynamics around a bulk dislocation intersection with a Ag(111) surface. Phys. Rev. B 71, 155426 (2005).

    Article  Google Scholar 

  14. Christiansen, J. et al. Atomic-scale structure of dislocations revealed by scanning tunneling microscopy and molecular dynamics. Phys. Rev. Lett. 88, 206106 (2002).

    Article  CAS  Google Scholar 

  15. Barth, J. V., Brune, H., Ertl, G. & Behm, R. J. Scanning tunneling microscopy observations on the reconstructed Au(111) surface: atomic structure, long-range superstructure, rotational domains, and surface defects. Phys. Rev. B 42, 9307–9318 (1990).

    Article  CAS  Google Scholar 

  16. Trevor, D. J., Chidsey, C. E. D. & Loiacono, D. N. In situ scanning-tunneling-microscope observation of roughening, annealing, and dissolution of gold (111) in an electrochemical cell. Phys. Rev. Lett. 62, 929–932 (1989).

    Article  CAS  Google Scholar 

  17. Grim, R. G. et al. Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization. Energy Environ. Sci. 13, 472–494 (2020).

    Article  CAS  Google Scholar 

  18. Hori, Y., Kikuchi, K. & Suzuki, S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 14, 1695–1698 (1985).

    Article  Google Scholar 

  19. Bentley, C. L., Kang, M. & Unwin, P. R. Nanoscale surface structure–activity in electrochemistry and electrocatalysis. J. Am. Chem. Soc. 141, 2179–2193 (2019).

    Article  CAS  Google Scholar 

  20. Aaronson, B. D. B. et al. Pseudo-single-crystal electrochemistry on polycrystalline electrodes: visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction. J. Am. Chem. Soc. 135, 3873–3880 (2013).

    Article  CAS  Google Scholar 

  21. Wang, Y., Gordon, E. & Ren, H. Mapping the nucleation of H2 bubbles on polycrystalline Pt via scanning electrochemical cell microscopy. J. Phys. Chem. Lett. 10, 3887–3892 (2019).

    Article  CAS  Google Scholar 

  22. Kang, M., Momotenko, D., Page, A., Perry, D. & Unwin, P. R. Frontiers in nanoscale electrochemical imaging: faster, multifunctional, and ultrasensitive. Langmuir 32, 7993–8008 (2016).

    Article  CAS  Google Scholar 

  23. Ornelas, I. M., Unwin, P. R. & Bentley, C. L. High-throughput correlative electrochemistry–microscopy at a transmission electron microscopy grid electrode. Anal. Chem. 91, 14854–14859 (2019).

    Article  CAS  Google Scholar 

  24. Bentley, C. L., Kang, M. & Unwin, P. R. Nanoscale structure dynamics within electrocatalytic materials. J. Am. Chem. Soc. 139, 16813–16821 (2017).

    Article  CAS  Google Scholar 

  25. Wahab, O. J., Kang, M. & Unwin, P. R. Scanning electrochemical cell microscopy: a natural technique for single entity electrochemistry. Curr. Opin. Electrochem. 22, 120–128 (2020).

    Article  CAS  Google Scholar 

  26. Ebejer, N. et al. Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annu. Rev. Anal. Chem. 6, 329–351 (2013).

    Article  CAS  Google Scholar 

  27. Bentley, C. L. et al. Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): basal vs. edge plane activity. Chem. Sci. 8, 6583–6593 (2017).

    Article  CAS  Google Scholar 

  28. Ripatti, D. S., Veltman, T. R. & Kanan, M. W. Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion. Joule 3, 240–256 (2019).

    Article  CAS  Google Scholar 

  29. Ringe, S. et al. Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on gold. Nat. Commun. 11, 33 (2020).

    Article  CAS  Google Scholar 

  30. Wuttig, A., Yaguchi, M., Motobayashi, K., Osawa, M. & Surendranath, Y. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc. Natl Acad. Sci. USA 113, E4585–E4593 (2016).

    Article  CAS  Google Scholar 

  31. Zhang, B. A., Ozel, T., Elias, J. S., Costentin, C. & Nocera, D. G. Interplay of homogeneous reactions, mass transport, and kinetics in determining selectivity of the reduction of CO2 on gold electrodes. ACS Cent. Sci. 5, 1097–1105 (2019).

    Article  CAS  Google Scholar 

  32. Wuttig, A., Yoon, Y., Ryu, J. & Surendranath, Y. Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction. J. Am. Chem. Soc. 139, 17109–17113 (2017).

    Article  CAS  Google Scholar 

  33. Ooka, H., Figueiredo, M. C. & Koper, M. T. M. Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir 33, 9307–9313 (2017).

    Article  CAS  Google Scholar 

  34. Hall, A. S., Yoon, Y., Wuttig, A. & Surendranath, Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 137, 14834–14837 (2015).

    Article  CAS  Google Scholar 

  35. Mezzavilla, S., Horch, S., Stephens, I. E. L., Seger, B. & Chorkendorff, I. Structure sensitivity in the electrocatalytic reduction of CO2 with gold catalysts. Angew. Chem. Int. Ed. 131, 3814–3818 (2019).

    Article  Google Scholar 

  36. Cai, W. & Nix, W. D. Imperfections in Crystalline Solids (Cambridge Univ. Press, 2016).

  37. Britton, T. B., Holton, I., Meaden, G. & Dingley, D. High angular resolution electron backscatter diffraction: measurement of strain in functional and structural materials. Microsc. Anal. 27, 8–13 (2013).

    Google Scholar 

  38. Wilkinson, A. J. & Randman, D. Determination of elastic strain fields and geometrically necessary dislocation distributions near nanoindents using electron back scatter diffraction. Phil. Mag. 90, 1159–1177 (2010).

    Article  CAS  Google Scholar 

  39. Dingley, D. J., Wilkinson, A. J., Meaden, G. & Karamched, P. S. Elastic strain tensor measurement using electron backscatter diffraction in the SEM. J. Electron Microsc. 59, S155–S163 (2010).

    Article  CAS  Google Scholar 

  40. Wilkinson, A. J., Meaden, G. & Dingley, D. J. Mapping strains at the nanoscale using electron back scatter diffraction. Superlattices Microstruct. 45, 285–294 (2009).

    Article  CAS  Google Scholar 

  41. Jiang, J., Britton, T. B. & Wilkinson, A. J. Evolution of dislocation density distributions in copper during tensile deformation. Acta Mater. 61, 7227–7239 (2013).

    Article  CAS  Google Scholar 

  42. Guo, Y., Britton, T. B. & Wilkinson, A. J. Slip band–grain boundary interactions in commercial-purity titanium. Acta Mater. 76, 1–12 (2014).

    Article  CAS  Google Scholar 

  43. Littlewood, P. D., Britton, T. B. & Wilkinson, A. J. Geometrically necessary dislocation density distributions in Ti-6Al-4V deformed in tension. Acta Mater. 59, 6489–6500 (2011).

    Article  CAS  Google Scholar 

  44. Wallis, D., Hansen, L. N., Britton, T. B. & Wilkinson, A. J. Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction. Ultramicroscopy 168, 34–45 (2016).

    Article  CAS  Google Scholar 

  45. Britton, T. B., Liang, H., Dunne, F. P. E. & Wilkinson, A. J. The effect of crystal orientation on the indentation response of commercially pure titanium: experiments and simulations. Proc. R. Soc. A 466, 695–719 (2010).

    Article  CAS  Google Scholar 

  46. Britton, T. B. & Wilkinson, A. J. High resolution electron backscatter diffraction measurements of elastic strain variations in the presence of larger lattice rotations. Ultramicroscopy 114, 82–95 (2012).

    Article  CAS  Google Scholar 

  47. Ulvestad, A., Clark, J. N., Harder, R., Robinson, I. K. & Shpyrko, O. G. 3D imaging of twin domain defects in gold nanoparticles. Nano Lett. 15, 4066–4070 (2015).

    Article  CAS  Google Scholar 

  48. Yau, A., Cha, W., Kanan, M. W., Stephenson, G. B. & Ulvestad, A. Bragg coherent diffractive imaging of single-grain defect dynamics in polycrystalline films. Science 356, 739–742 (2017).

    Article  CAS  Google Scholar 

  49. Yu, H., Liu, J., Karamched, P., Wilkinson, A. J. & Hofmann, F. Mapping the full lattice strain tensor of a single dislocation by high angular resolution transmission Kikuchi diffraction (HR-TKD). Scr. Mater. 164, 36–41 (2019).

    Article  CAS  Google Scholar 

  50. Wallis, D., Hansen, L. N., Britton, T. B. & Wilkinson, A. J. High‐angular resolution electron backscatter diffraction as a new tool for mapping lattice distortion in geological minerals. J. Geophys. Res. Solid Earth 124, 6337–6358 (2019).

    Article  Google Scholar 

  51. Humphreys, F. J. Grain and subgrain characterisation by electron backscatter diffraction. J. Mater. Sci. 36, 3833–3854 (2001).

    Article  CAS  Google Scholar 

  52. Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    Article  CAS  Google Scholar 

  53. Wang, Y. & Hall, A. S. Pulsed electrodeposition of metastable Pd31Bi12 nanoparticles for oxygen reduction electrocatalysis. ACS Energy Lett. 5, 17–22 (2020).

    Article  CAS  Google Scholar 

  54. Hamelin, A. Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces. J. Electroanal. Chem. 407, 1–11 (1996).

    Article  Google Scholar 

  55. Chen, C.-H. et al. Voltammetric scanning electrochemical cell microscopy: dynamic imaging of hydrazine electro-oxidation on platinum electrodes. Anal. Chem. 87, 5782–5789 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work at Stanford was supported by the National Science Foundation (CHE-1855950). R.G.M. gratefully acknowledges Stanford University for a DARE fellowship and J.A.R. gratefully acknowledges a Stanford Graduate Fellowship. M.K. and P.R.U. are grateful to the Warwick–Monash Accelerator Fund for support. M.K. also acknowledges support from the Leverhulme Trust for an Early Career Fellowship. I.J.M. and P.R.U. are supported by Engineering and Physical Sciences Research Council Programme Grant EP/R018820/1. P.R.U. thanks the Royal Society for a Wolfson Research Merit Award. O.J.W. acknowledges support from the University of Warwick Chancellor’s International Scholarship. Parts of this work were performed at the Stanford Nano Shared Facilities, which is supported by the National Science Foundation under award ECCS-1542152.

Author information

Authors and Affiliations

Authors

Contributions

R.G.M., M.K., P.R.U. and M.W.K. conceived and designed the study. R.G.M., M.K. and O.J.W. performed SECCM experiments. O.J.W. prepared Au samples for SECCM imaging. R.G.M. and J.A.R. performed gas diffusion electrode electrolysis studies. R.G.M., M.K. and O.J.W. performed SEM/EBSD imaging of the samples, and R.G.M. performed HR-EBSD measurements and analysis. I.J.M. and P.R.U. designed the finite element method calculations, and I.J.M. built the COMSOL model. R.G.M., M.K. and M.W.K. wrote the initial draft of the paper, and all authors contributed to the final version.

Corresponding authors

Correspondence to Patrick R. Unwin or Matthew W. Kanan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Tables 1–5, Notes 1 and 2, captions for Videos 1–5 and references.

Supplementary Video 1

Spatially resolved electrochemical video (707 pixels over a 49 μm × 7.7 μm scan area, 220 image frames) obtained with the voltammetric SECCM protocol, visualizing activity of H2 evolution on Sample A.

Supplementary Video 2

Spatially resolved electrochemical video (1,140 pixels over a 30 μm × 9.5 μm scan area, 220 image frames) obtained with the voltammetric SECCM protocol, visualizing activity of CO2 electroreduction on Sample A.

Supplementary Video 3

Spatially resolved electrochemical video (369 pixels over a 20.5 μm × 4.5 μm scan area, 220 image frames) obtained with the voltammetric SECCM protocol, visualizing activity of H2 evolution on Sample A.

Supplementary Video 4

Spatially resolved electrochemical video (1,281 pixels over a 30.5 μm × 10.5 μm scan area, 220 image frames) obtained with the voltammetric SECCM protocol, visualizing activity of CO2 electroreduction on Sample A.

Supplementary Video 5

Spatially resolved electrochemical video (756 pixels over a 13.5 μm × 14 μm scan area, 220 image frames) obtained with the voltammetric SECCM protocol, visualizing activity of CO2 electroreduction on Sample B.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariano, R.G., Kang, M., Wahab, O.J. et al. Microstructural origin of locally enhanced CO2 electroreduction activity on gold. Nat. Mater. 20, 1000–1006 (2021). https://doi.org/10.1038/s41563-021-00958-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-00958-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing