Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Three-dimensional nanolithography guided by DNA modular epitaxy

Abstract

Lithographic scaling of periodic three-dimensional patterns is critical for advancing scalable nanomanufacturing. Current state-of-the-art quadruple patterning or extreme-ultraviolet lithography produce a line pitch down to around 30 nm, which might be further scaled to sub-20 nm through complex post-fabrication processes. Herein, we report the use of three-dimensional (3D) DNA nanostructures to scale the line pitch down to 16.2 nm, around 50% smaller than state-of-the-art results. We use a DNA modular epitaxy approach to fabricate 3D DNA masks with prescribed structural parameters (geometry, pitch and critical dimensions) along a designer assembly pathway. Single-run reactive ion etching then transfers the DNA patterns to a Si substrate at a lateral critical dimension of 7 nm and a vertical critical dimension of 2 nm. The nanolithography guided by DNA modular epitaxy achieves a smaller pitch than the projected values for advanced technology nodes in field-effect transistors, and provides a potential complement to the existing lithographic tools for advanced 3D nanomanufacturing.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategy overview.
Fig. 2: DNA modular epitaxy.
Fig. 3: Pattern diversity.
Fig. 4: Scaling pitch and CD of DNA masks.
Fig. 5: Pattern transfer to silicon.
Fig. 6: 3D lithography with single DNA mask.

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information files and from the corresponding authors upon reasonable request.

References

  1. Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007).

    Article  CAS  Google Scholar 

  2. Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photon. 5, 523–530 (2011).

    Article  CAS  Google Scholar 

  3. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  4. Fu, J., Schoch, R. B., Stevens, A. L., Tannenbaum, S. R. & Han, J. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat. Nanotechnol. 2, 121–128 (2007).

    Article  CAS  Google Scholar 

  5. Loh, O. Y. & Espinosa, H. D. Nanoelectromechanical contact switches. Nat. Nanotechnol. 7, 283–295 (2012).

    Article  CAS  Google Scholar 

  6. Chau, R. et al. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. Nanotechnol. 4, 153–158 (2005).

    Article  Google Scholar 

  7. James, D. IEDM 2017: Intel’s 10nm Platform Process (2017); https://sst.semiconductor-digest.com/chipworks_real_chips_blog/2017/12/

  8. Vincent, B., Lariviere, S., Wilson, C., Kim, R. H. & Ervin, J. Virtual fabrication and advanced process control improve yield for SAQP process assessment with 16 nm half-pitch. In Proc. SPIE, Adv. Etch. Technol. Nanopatterning VIII 109630Q (SPIE, 2019).

  9. The International Technology Roadmap for Semiconductors 2.0: 2015 Edition (Semiconductor Industry Association, 2015).

  10. Wagner, C. & Harned, N. EUV lithography: lithography gets extreme. Nat. Photon. 4, 24–26 (2010).

    Article  CAS  Google Scholar 

  11. Chen, Y. Nanofabrication by electron beam lithography and its applications: a review. Microelectron. Eng. 135, 57–72 (2015).

    Article  CAS  Google Scholar 

  12. Park, M., Harrison, C., Chaikin, P. M., Register, R. A. & Adamson, D. H. Block copolymer lithography: periodic arrays of 1011 holes in 1 square centimeter. Science 276, 1401–1404 (1997).

    Article  CAS  Google Scholar 

  13. Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996).

    Article  CAS  Google Scholar 

  14. Wu, B. & Kumar, A. Extreme ultraviolet lithography and three dimensional integrated circuit—a review. Appl. Phys. Rev. 1, 011104 (2014).

    Article  Google Scholar 

  15. Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

    Article  Google Scholar 

  16. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  17. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  Google Scholar 

  18. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article  CAS  Google Scholar 

  19. Wei, B., Dai, M. J. & Yin, P. Complex shapes self-assembled from single stranded DNA tiles. Nature 485, 623–626 (2012).

    Article  CAS  Google Scholar 

  20. Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    Article  CAS  Google Scholar 

  21. Ke, Y. et al. DNA brick crystals with prescribed depths. Nat. Chem. 6, 994–1002 (2014).

    Article  CAS  Google Scholar 

  22. Ong, L. L. et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552, 72–77 (2017).

    Article  CAS  Google Scholar 

  23. Maune, H. T. et al. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol. 5, 61–66 (2009).

    Article  Google Scholar 

  24. Liu, N. & Liedl, T. DNA-assembled advanced plasmonic architectures. Chem. Rev. 118, 3032–3053 (2018).

    Article  CAS  Google Scholar 

  25. Sun, W. et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science 368, 874–877 (2020).

    Article  CAS  Google Scholar 

  26. Zhao, M. et al. DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors. Science 368, 878–881 (2020).

    Article  CAS  Google Scholar 

  27. Sun, W. et al. Casting inorganic structures with DNA molds. Science 346, 1258361 (2014).

    Article  Google Scholar 

  28. Liu, X. et al. Complex silica composite nanomaterials templated with DNA origami. Nature 559, 593–598 (2018).

    Article  CAS  Google Scholar 

  29. Jin, Z. et al. Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning. Nat. Commun. 4, 1663 (2013).

    Article  Google Scholar 

  30. Shen, B. et al. Plasmonic nanostructures through DNA-assisted lithography. Sci. Adv. 4, eaap8978 (2018).

    Article  Google Scholar 

  31. Hong, F., Zhang, F., Liu, Y. & Yan, H. DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117, 12584–12640 (2017).

    Article  CAS  Google Scholar 

  32. Tikhomirov, G., Petersen, P. & Qian, L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017).

    Article  CAS  Google Scholar 

  33. Diagne, C. T., Brun, C., Gasparutto, D., Baillin, X. & Tiron, R. DNA origami mask for sub-ten-nanometer lithography. ACS Nano 10, 6458–6463 (2016).

    Article  CAS  Google Scholar 

  34. Surwade, S. P., Zhao, S. & Liu, H. Molecular lithography through DNA-mediated etching and masking of SiO2. J. Am. Chem. Soc. 133, 11868–11871 (2011).

    Article  CAS  Google Scholar 

  35. Surwade, S. P. et al. Nanoscale growth and patterning of inorganic oxides using DNA nanostructure templates. J. Am. Chem. Soc. 135, 6778–6781 (2013).

    Article  CAS  Google Scholar 

  36. Schulman, R. & Winfree, E. Synthesis of crystals with a programmable kinetic barrier to nucleation. Proc. Natl Acad. Sci. USA 104, 15236–15241 (2007).

    Article  CAS  Google Scholar 

  37. Barish, R. D., Schulman, R., Rothemund, P. W. K. & Winfree, E. An information-bearing seed for nucleating algorithmic self-assembly. Proc. Natl Acad. Sci. USA 106, 6054–6059 (2009).

    Article  CAS  Google Scholar 

  38. Woods, D. et al. Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. Nature 567, 366–372 (2019).

    Article  CAS  Google Scholar 

  39. Zhang, Y., Reinhardt, A., Wang, P., Song, J. & Ke, Y. Programming the nucleation of DNA brick self-assembly with a seeding strand. Angew. Chem. Int. Ed. Engl. 132, 8594–8600 (2020).

    Article  Google Scholar 

  40. Hooks, D. E., Fritz, T. & Ward, M. D. Epitaxy and molecular organization on solid substrates. Adv. Mater. 13, 227–241 (2001).

    Article  CAS  Google Scholar 

  41. Peng, X., Schlamp, M. C., Kadavanich, A. V. & Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019–7029 (1997).

    Article  CAS  Google Scholar 

  42. Choi, J. K., Sargsyan, G., Shabbir-Hussain, M., Holmes, A. E. & Balaz, M. Chiroptical detection of condensed nickel(ii)-Z-DNA in the presence of the B-DNA via porphyrin exciton coupled circular dichroism. J. Phys. Chem. B 115, 10182–10188 (2011).

    Article  CAS  Google Scholar 

  43. Raley, A., Mack, C., Thibaut, S., Liu, E. & Ko, A. Benchmarking of EUV lithography line/space patterning versus immersion lithography multipatterning schemes at equivalent pitch. In Proc. SPIE, International Conference on Extreme Ultraviolet Lithography 2018 1080915 (SPIE, 2018).

  44. Wei, B., Ong, L. L., Chen, J., Jaffe, A. S. & Yin, P. Complex reconfiguration of DNA nanostructures. Angew. Chem. Int. Ed. Engl. 53, 7475–7479 (2014).

    Article  CAS  Google Scholar 

  45. Rueger, N. R. et al. Role of steady state fluorocarbon films in the etching of silicon dioxide using CHF3 in an inductively coupled plasma reactor. J. Vac. Sci. Technol. A 15, 1881–1889 (1997).

    Article  CAS  Google Scholar 

  46. Khazi, I., Muthiah, U. & Mescheder, U. 3D free forms in c-Si via grayscale lithography and RIE. Microelectron. Eng. 193, 34–40 (2018).

    Article  CAS  Google Scholar 

  47. Yamazaki, K., Kurihara, K., Namatsu, H., Yamazaki, K. & Kurihara, K. Supercritical resist dryer. J. Vac. Sci. Technol. B 18, 780–784 (2000).

    Article  Google Scholar 

  48. Gopinath, A., Miyazono, E., Faraon, A. & Rothemund, P. W. K. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature 535, 401–405 (2016).

    Article  CAS  Google Scholar 

  49. Brun, C. et al. Metallic conductive nanowires elaborated by PVD metal deposition on suspended DNA bundles. Small 13, 1700956 (2017).

    Article  Google Scholar 

  50. Zhou, F. et al. Programmably shaped carbon nanostructure from shape-conserving carbonization of DNA. ACS Nano 10, 3069–3077 (2016).

    Article  CAS  Google Scholar 

  51. Shen, J., Sun, W. & Yin, P. Scalable nucleic acid-based nanofabrication. US patent 2017/0190573 A1 (2017).

Download references

Acknowledgements

We thank J.D. Deng, L. Xie and S. Stoilova-McPhie at the Center for Nanoscale Systems of Harvard University for valuable discussion and help with cryo-EM work. This work is supported by NSF (CMMI-1333215, CMMI-1344915 and CBET-1729397), AFOSR (MURI FATE, FA9550–15–1–0514) and internal funding support from the Wyss Institute to P.Y. D.L. is supported by a Merck Fellowship of the Life Sciences Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.S. conceived, designed and conducted the lithography study and wrote the manuscript. W.S. conceived, designed and conducted the DNA modular epitaxy study and wrote the manuscript. D.L. performed cryo-EM analysis. D.L. and T.S. analysed the data and co-wrote the manuscript. P.Y. conceived and supervised the study and wrote the paper. All authors reviewed, edited and approved the manuscript.

Corresponding author

Correspondence to Peng Yin.

Ethics declarations

Competing interests

A patent based on this work51 was issued to J.S., W.S. and P.Y.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Characterization of DNA mask 12H-grid.

a, SEM image section of DNA mask 12H-grid. b, The corresponding SEM line-scan profiles along the x axis. c, The histogram of mask taller-line width. d, The histogram of taller-line pitch. e, The corresponding SEM line-scan profiles along the z axis. f, The histogram of mask lower-line width. g, The histogram of lower-line pitch. h, SEM images of randomly selected DNA mask 12H-grid.

Extended Data Fig. 2 Characterization of DNA mask 12H-b.

a, SEM image section of DNA mask 12H-b with labeled scan-lines. b, The corresponding SEM line-scan profiles along the x axis. c, The histogram of DNA line width. d, The histogram of DNA line pitch. e, SEM images of randomly selected DNA mask 12H-b.

Extended Data Fig. 3 Characterization of DNA mask 10H-b.

a, SEM image section of DNA mask 10H-b with labeled scan-lines. b, The corresponding SEM line-scan profiles along the x axis. c, The histogram of DNA line width. d, The histogram of DNA line pitch. e, SEM images of randomly selected DNA mask 10H-b.

Extended Data Fig. 4 Characterization of DNA mask 8H-b.

a, SEM image section of DNA mask 8H-b-0.5H2 with labeled scan-lines. b, The corresponding SEM line-scan profiles along the x axis. c, The histogram of DNA line width. d, The histogram of DNA line pitch. e, SEM images of randomly selected DNA mask 8H-b-0.5H2.

Extended Data Fig. 5 Characterization of DNA mask 6H-b.

a, SEM image section of DNA mask 6H-b with labeled scan-lines. b, The corresponding SEM line-scan profiles along the x axis. c, The histogram of DNA line width. d, The histogram of DNA line pitch. e, SEM images of randomly selected DNA mask 6H-b.

Extended Data Fig. 6 Characterization of silicon pattern Si-12H-b.

a, SEM image section of silicon pattern Si-12H-b with labeled scan-line profiles. b, The corresponding SEM line-scan profiles along the x axis. c, The histogram of silicon line width. d, The histogram of silicon line pitch. e, SEM images of randomly selected silicon pattern Si-12H-b.

Extended Data Fig. 7 Characterization of silicon pattern Si-10H-b.

a, SEM image section of silicon pattern Si-10H-b with labeled scan-line profiles. b, The corresponding SEM line-scan profiles along the x axis. c, The histogram of silicon line width. d, The histogram of silicon line pitch. e, SEM images of randomly selected silicon pattern Si-10H-b.

Extended Data Fig. 8 Characterization of silicon pattern Si-8H-b-0.5H2.

a, SEM image section of silicon pattern Si-8H-b-0.5H2 with labeled scan-line profiles. b, The corresponding SEM line-scan profiles along the x axis. c, The histogram of silicon line width. d, The histogram of silicon line pitch. e, SEM images of randomly selected silicon pattern Si-8H-b-0.5H2.

Extended Data Fig. 9 Characterization of silicon pattern Si-6H-b.

a, SEM image section of silicon pattern Si-6H-b with labeled scan-lines. b, The corresponding SEM line-scan profiles along the x axis. c, The histogram of silicon line width. d, The histogram of silicon line pitch. e, SEM images of randomly selected silicon pattern Si-6H-b.

Extended Data Fig. 10 Characterization of silicon pattern Si-12H-grid.

a, SEM image section of silicon pattern Si-12H-grid. b, The corresponding SEM line-scan profiles along the x axis. c, The histogram of taller-Si-line width. d, The histogram of taller-Si-line pitch. e, The corresponding SEM line-scan profiles along the z axis. f, The histogram of lower-Si-line width. g, The histogram of lower-Si-line pitch. h, SEM images of randomly selected silicon pattern Si-12H-grid.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–24 and Tables 1–3.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Sun, W., Liu, D. et al. Three-dimensional nanolithography guided by DNA modular epitaxy. Nat. Mater. 20, 683–690 (2021). https://doi.org/10.1038/s41563-021-00930-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-00930-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing