Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phonon-engineered extreme thermal conductivity materials

Abstract

Materials with ultrahigh or low thermal conductivity are desirable for many technological applications, such as thermal management of electronic and photonic devices, heat exchangers, energy converters and thermal insulation. Recent advances in simulation tools (first principles, the atomistic Green’s function and molecular dynamics) and experimental techniques (pump–probe techniques and microfabricated platforms) have led to new insights on phonon transport and scattering in materials and the discovery of new thermal materials, and are enabling the engineering of phonons towards desired thermal properties. We review recent discoveries of both inorganic and organic materials with ultrahigh and low thermal conductivity, highlighting heat-conduction physics, strategies used to change thermal conductivity, and future directions to achieve extreme thermal conductivities in solid-state materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transport regimes for heat conduction and engineering of thermal conductivity.
Fig. 2: Discovery and band structure engineering of materials with ultrahigh thermal conductivity.

Figure adapted with permission from ref. 136, AAAS (a); ref. 137, Springer Nature Ltd (b); ref. 33, APS (c)

Fig. 3: Designing and engineering materials with ultralow thermal conductivity.

Figure reproduced with permission from ref. 55, Springer Nature Ltd (a, middle-left) and ref. 56, Springer Nature Ltd (a, middle-right)

Fig. 4: Phonon–interface interaction.

Figure reproduced with permission from ref. 26, Springer Nature Ltd (c) and ref. 27, AAAS (d,e)

Fig. 5: Heat conduction in organic materials.

Similar content being viewed by others

References

  1. Kittel, C. Introduction to Solid State Physics 7th edn (Wiley, 1996).

  2. Peierls, R. Zur kinetischen Theorie der Wärmeleitung in Kristallen. Ann. Phys. 395, 1055–1101 (1929).

    Article  Google Scholar 

  3. Allen, P. B. & Feldman, J. L. Thermal conductivity of disordered harmonic solids. Phys. Rev. B 48, 12581–12588 (1993).

    Article  CAS  Google Scholar 

  4. Klemens, P. G. The scattering of low-frequency lattice waves by static imperfections. Proc. Phys. Soc. A 68, 1113 (1955).

    Article  Google Scholar 

  5. Callaway, J. Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959).

    Article  CAS  Google Scholar 

  6. Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793 (2003).

    Article  CAS  Google Scholar 

  7. Cahill, D. G. et al. Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014).

    Article  CAS  Google Scholar 

  8. Dresselhaus, M. S. et al. New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007).

    Article  CAS  Google Scholar 

  9. Volz, S. G. & Chen, G. Molecular-dynamics simulation of thermal conductivity of silicon crystals. Phys. Rev. B 61, 2651 (2000).

    Article  CAS  Google Scholar 

  10. McGaughey, A. J. H. & Larkin, J. M. Predicting phonon properties from equilibrium molecular dynamics simulations. Annu. Rev. Heat. Transf. 17, 49–87 (2014).

    Article  Google Scholar 

  11. Broido, D. A., Malorny, M., Birner, G., Mingo, N. & Stewart, D. A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 91, 231922 (2007).

    Article  CAS  Google Scholar 

  12. Zhang, W., Fisher, T. S. & Mingo, N. The atomistic Green’s function method: an efficient simulation approach for nanoscale phonon transport. Numer. Heat. Transf. B 51, 333–349 (2007).

    Article  CAS  Google Scholar 

  13. Marcolongo, A., Umari, P. & Baroni, S. Microscopic theory and quantum simulation of atomic heat transport. Nat. Phys. 12, 80–84 (2015).

    Article  CAS  Google Scholar 

  14. Bartok, A. P., Payne, M. C., Kondor, R. & Csanyi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

    Article  CAS  Google Scholar 

  15. Dai, J. & Tian, Z. Rigorous formalism of anharmonic atomistic Green’s function for three-dimensional interfaces. Phys. Rev. B 101, 041301(R) (2020).

    Article  Google Scholar 

  16. Minnich, A. J. et al. Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107, 095901 (2011).

    Article  CAS  Google Scholar 

  17. Siemens, M. E. et al. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 9, 26–30 (2010).

    Article  CAS  Google Scholar 

  18. Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Experimental observation of high thermal conductivity in boron arsenide. Science 361, 575–578 (2018).

    Article  CAS  Google Scholar 

  19. Tian, F. et al. Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582–585 (2018).

    Article  CAS  Google Scholar 

  20. Li, S. et al. High thermal conductivity in cubic boron arsenide crystals. Science 361, 579–581 (2018).

    Article  CAS  Google Scholar 

  21. van Roekeghem, A., Carrete, J., Oses, C., Curtarolo, S. & Mingo, N. High-throughput computation of thermal conductivity of high-temperature solid phases: the case of oxide and fluoride perovskites. Phys. Rev. 6, 041061 (2016).

    Article  Google Scholar 

  22. Seyf, H. R. et al. Rethinking phonons: the issue of disorder. npj Comput. Mater. 3, 49 (2017).

    Article  CAS  Google Scholar 

  23. Kim, W. et al. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006).

    Article  CAS  Google Scholar 

  24. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article  CAS  Google Scholar 

  25. Luckyanova, M. N. et al. Coherent phonon heat conduction in superlattices. Science 338, 936–939 (2012).

    Article  CAS  Google Scholar 

  26. Ravichandran, J. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168–172 (2014).

    Article  CAS  Google Scholar 

  27. Luckyanova, M. N. et al. Phonon localization in heat conduction. Sci. Adv. 4, eaat9460 (2018).

    Article  CAS  Google Scholar 

  28. Fermi, E., Pasta, P., S, U. & Tsingou, M. Studies of the Nonlinear Problems (Univ. California, 1955).

  29. Huberman, S. et al. Observation of second sound in graphite at temperatures above 100 K. Science 364, 375–379 (2019).

    Article  CAS  Google Scholar 

  30. Slack, G. A. Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321–335 (1973).

    Article  CAS  Google Scholar 

  31. Lindsay, L., Broido, D. A. & Reinecke, T. L. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111, 025901 (2013).

    Article  CAS  Google Scholar 

  32. Ravichandran, N. K. & Broido, D. Phonon-phonon interactions in strongly bonded solids: selection rules and higher-order processes. Phys. Rev. 10, 021063 (2020).

    Article  CAS  Google Scholar 

  33. Feng, T., Lindsay, L. & Ruan, X. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B 96, 161201(R) (2017).

    Article  Google Scholar 

  34. Lv, B. et al. Experimental study of the proposed super-thermal-conductor: BAs. Appl. Phys. Lett. 106, 074105 (2015).

    Article  CAS  Google Scholar 

  35. Lindsay, L., Broido, D. A. & Reinecke, T. L. Phonon-isotope scattering and thermal conductivity in materials with a large isotope effect: a first-principles study. Phys. Rev. B 88, 144306 (2013).

    Article  CAS  Google Scholar 

  36. Zheng, Q. et al. Thermal conductivity of GaN, 71GaN, and SiC from 150 K to 850 K. Phys. Rev. Mater. 3, 014601 (2019).

    Article  CAS  Google Scholar 

  37. Gu, X., Wei, Y., Yin, X., Li, B. & Yang, R. Phononic thermal properties of two-dimensional materials. Rev. Mod. Phys. 90, 041002 (2018).

    Article  CAS  Google Scholar 

  38. Lindsay, L., Broido, D. A. & Mingo, N. Lattice thermal conductivity of single-walled carbon nanotubes: beyond the relaxation time approximation and phonon-phonon scattering selection rules. Phys. Rev. B 80, 125407 (2009).

    Article  CAS  Google Scholar 

  39. Lindsay, L., Broido, D. A. & Mingo, N. Flexural phonons and thermal transport in graphene. Phys. Rev. B 82, 115427 (2010).

    Article  CAS  Google Scholar 

  40. Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001).

    Article  CAS  Google Scholar 

  41. Maruyama, S. A molecular dynamics simulation of heat conduction in finite length SWNTs. Phys. B 323, 193–195 (2002).

    Article  CAS  Google Scholar 

  42. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    Article  CAS  Google Scholar 

  43. Schmidt, A. J., Chen, X. & Chen, G. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114902 (2008).

    Article  CAS  Google Scholar 

  44. Mingo, N. & Broido, D. A. Length dependence of carbon nanotube thermal conductivity and the ‘problem of long wavelengths’. Nano Lett. 5, 1221–1225 (2005).

    Article  CAS  Google Scholar 

  45. Lepri, S. Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003).

    Article  CAS  Google Scholar 

  46. Chang, C. W., Okawa, D., Garcia, H., Majumdar, A. & Zettl, A. Breakdown of Fourier’s law in nanotube thermal conductors. Phys. Rev. Lett. 101, 075903 (2008).

    Article  CAS  Google Scholar 

  47. Xu, X. et al. Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5, 3689 (2014).

    Article  CAS  Google Scholar 

  48. Takabatake, T., Suekuni, K., Nakayama, T. & Kaneshita, E. Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory. Rev. Mod. Phys. 86, 669–716 (2014).

    Article  CAS  Google Scholar 

  49. Clarke, D. R. & Phillpot, S. R. Thermal barrier coating materials. Mater. Today 8, 22–29 (2005).

    Article  CAS  Google Scholar 

  50. Weathers, A. et al. Glass-like thermal conductivity in nanostructures of a complex anisotropic crystal. Phys. Rev. B 96, 214202 (2017).

    Article  Google Scholar 

  51. Christensen, M. et al. Avoided crossing of rattler modes in thermoelectric materials. Nat. Mater. 7, 811–815 (2008).

    Article  CAS  Google Scholar 

  52. Sales, B. C., Mandrus, D. & Williams, R. K. Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272, 1325–1328 (1996).

    Article  CAS  Google Scholar 

  53. Mukhopadhyay, S. et al. Two-channel model for ultralow thermal conductivity of crystalline Tl3VSe4. Science 360, 1445–1458 (2018).

    Article  CAS  Google Scholar 

  54. Hoogeboom-Pot, K. M. et al. A new regime of nanoscale thermal transport: collective diffusion increases dissipation efficiency. Proc. Natl Acad. Sci. USA 112, 4846–4851 (2015).

    Article  CAS  Google Scholar 

  55. Lee, S. et al. Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 5, 3525 (2014).

    Article  Google Scholar 

  56. Delaire, O. et al. Giant anharmonic phonon scattering in PbTe. Nat. Mater. 10, 614–619 (2011).

    Article  CAS  Google Scholar 

  57. Tian, Z. et al. Phonon conduction in PbSe, PbTe, and PbTe1−xSex from first-principles calculations. Phys. Rev. B 85, 184303 (2012).

    Article  CAS  Google Scholar 

  58. Li, C. W. et al. Orbitally driven giant phonon anharmonicity in SnSe. Nat. Phys. 11, 1063–1069 (2015).

    Article  CAS  Google Scholar 

  59. Ma, H. et al. Supercompliant and soft (CH3NH3)3Bi2I9 crystal with ultralow thermal conductivity. Phys. Rev. Lett. 123, 155901 (2019).

    Article  CAS  Google Scholar 

  60. Qian, X., Gu, X. & Yang, R. Lattice thermal conductivity of organic-inorganic hybrid perovskite CH3NH3PbI3. Appl. Phys. Lett. 108, 063902 (2016).

    Article  CAS  Google Scholar 

  61. Pisoni, A. et al. Ultra-low thermal conductivity in organic–inorganic hybrid perovskite CH3NH3PbI3. J. Phys. Chem. Lett. 5, 2488–2492 (2014).

    Article  CAS  Google Scholar 

  62. Zhu, T. & Ertekin, E. Mixed phononic and non-phononic transport in hybrid lead halide perovskites: glass-crystal duality, dynamical disorder, and anharmonicity. Energy Environ. Sci. 12, 216–229 (2019).

    Article  CAS  Google Scholar 

  63. Ioffe, A. F. Semiconductor thermoelements and thermoelectric cooling. Phys. Today 12, 42 (1959).

    Article  Google Scholar 

  64. Tamura, S. Isotope scattering of dispersive phonons in Ge. Phys. Rev. B 27, 858–866 (1983).

    Article  CAS  Google Scholar 

  65. Garg, J., Bonini, N., Kozinsky, B. & Marzari, N. Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. Phys. Rev. Lett. 106, 045901 (2011).

    Article  CAS  Google Scholar 

  66. Murakami, T., Shiga, T., Hori, T., Esfarjani, K. & Shiomi, J. Importance of local force fields on lattice thermal conductivity reduction in PbTe1−xSexalloys. Europhys. Lett. 102, 46002 (2013).

    Article  CAS  Google Scholar 

  67. Arrigoni, M., Carrete, J., Mingo, N. & Madsen, G. K. H. First-principles quantitative prediction of the lattice thermal conductivity in random semiconductor alloys: the role of force-constant disorder. Phys. Rev. B 98, 115205 (2018).

    Article  CAS  Google Scholar 

  68. Simoncelli, M., Marzari, N. & Mauri, F. Unified theory of thermal transport in crystals and glasses. Nat. Phys. 15, 809–813 (2019).

    Article  CAS  Google Scholar 

  69. Isaeva, L., Barbalinardo, G., Donadio, D. & Baroni, S. Modeling heat transport in crystals and glasses from a unified lattice-dynamical approach. Nat. Commun. 10, 3853 (2019).

    Article  CAS  Google Scholar 

  70. Yang, R. & Chen, G. Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys. Rev. B 69, 195316 (2004).

    Article  CAS  Google Scholar 

  71. Casimir, H. B. G. Note on the conduction of heat in crystals. Physica 5, 495–500 (1938).

    Article  Google Scholar 

  72. Chiritescu, C. et al. Ultralow thermal conductivity in disordered, layered WSe2 Crystals. Science 315, 351–353 (2007).

    Article  CAS  Google Scholar 

  73. Vaziri, S. et al. Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials. Sci. Adv. 5, eaax1325 (2019).

    Article  CAS  Google Scholar 

  74. Chen, G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958 (1998).

    Article  CAS  Google Scholar 

  75. Majumdar, A. Microscale heat conduction in dielectric thin films. J. Heat. Transf. 115, 7–16 (1993).

    Article  Google Scholar 

  76. Chen, G. in Recent Trends in Thermoelectric Materials Research III Vol. 71 (ed. Tritt, T. M.) Ch. 5, 203–259 (Elsevier, 2001).

  77. Venkatasubramanian, R. Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 61, 3091 (2000).

    Article  CAS  Google Scholar 

  78. Chen, G. Phonon wave heat conduction in thin films and superlattices. J. Heat. Transf. 121, 945–953 (1999).

    Article  Google Scholar 

  79. Yang, B. & Chen, G. Partially coherent phonon heat conduction in superlattices. Phys. Rev. B 67, 195311 (2003).

    Article  CAS  Google Scholar 

  80. Maire, J. et al. Heat conduction tuning by wave nature of phonons. Sci. Adv. 3, e1700027 (2017).

    Article  CAS  Google Scholar 

  81. Sperling, L. H. Introduction to Physical Polymer Science (Wiley, 2005).

  82. Liu, J. & Yang, R. Length-dependent thermal conductivity of single extended polymer chains. Phys. Rev. B 86, 104307 (2012).

    Article  CAS  Google Scholar 

  83. Zhang, T. & Luo, T. Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers. J. Appl. Phys. 112, 094304 (2012).

    Article  CAS  Google Scholar 

  84. Henry, A. & Chen, G. High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys. Rev. Lett. 101, 235502 (2008).

    Article  CAS  Google Scholar 

  85. Zhang, T., Wu, X. & Luo, T. Polymer nanofibers with outstanding thermal conductivity and thermal stability: fundamental linkage between molecular characteristics and macroscopic thermal properties. J. Phys. Chem. C 118, 21148–21159 (2014).

    Article  CAS  Google Scholar 

  86. Shulumba, N., Hellman, O. & Minnich, A. J. Lattice thermal conductivity of polyethylene molecular crystals from first-principles including nuclear quantum effects. Phys. Rev. Lett. 119, 185901 (2017).

    Article  Google Scholar 

  87. Wang, X., Kaviany, M. & Huang, B. Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal. Nanoscale 9, 18022–18031 (2017).

    Article  CAS  Google Scholar 

  88. Wang, X., Ho, V., Segalman, R. A. & Cahill, D. G. Thermal conductivity of high-modulus polymer fibers. Macromolecules 46, 4937–4943 (2013).

    Article  CAS  Google Scholar 

  89. Shen, S., Henry, A., Tong, J., Zheng, R. & Chen, G. Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5, 251–255 (2010).

    Article  CAS  Google Scholar 

  90. Shrestha, R. et al. Crystalline polymer nanofibers with ultra-high strength and thermal conductivity. Nat. Commun. 9, 1664 (2018).

    Article  CAS  Google Scholar 

  91. Xu, Y. et al. Nanostructured polymer films with metal-like thermal conductivity. Nat. Commun. 10, 1771 (2019).

    Article  CAS  Google Scholar 

  92. Singh, V. et al. High thermal conductivity of chain-oriented amorphous polythiophene. Nat. Nanotechnol. 9, 384–390 (2014).

    Article  CAS  Google Scholar 

  93. Ronca, S., Igarashi, T., Forte, G. & Rastogi, S. Metallic-like thermal conductivity in a lightweight insulator: Solid-state processed ultra high molecular weight polyethylene tapes and films. Polymer 123, 203–210 (2017).

    Article  CAS  Google Scholar 

  94. Zhu, B. et al. Novel polyethylene fibers of very high thermal conductivity enabled by amorphous restructuring. ACS Omega 2, 3931–3944 (2017).

    Article  CAS  Google Scholar 

  95. Smith, M. K., Singh, V., Kalaitzidou, K. & Cola, B. A. Poly(3-hexylthiophene) nanotube array surfaces with tunable wetting and contact thermal energy transport. ACS Nano 9, 1080–1088 (2015).

    Article  CAS  Google Scholar 

  96. Lu, C. et al. Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO). Polymer 115, 52–59 (2017).

    Article  CAS  Google Scholar 

  97. Kurabayashi, K., Asheghi, M. & Goodson, K. E. Measurement of the thermal conductivity anisotropy in polyimide films. J. Microelectromech. Syst. 8, 180–191 (1999).

    Article  CAS  Google Scholar 

  98. Wei, X., Zhang, T. & Luo, T. Chain conformation-dependent thermal conductivity of amorphous polymer blends: the impact of inter- and intra-chain interactions. Phys. Chem. Chem. Phys. 18, 32146–32154 (2016).

    Article  CAS  Google Scholar 

  99. Shanker, A. et al. High thermal conductivity in electrostatically engineered amorphous polymers. Sci. Adv. 3, e1700342 (2017).

    Article  CAS  Google Scholar 

  100. Xie, X. et al. High and low thermal conductivity of amorphous macromolecules. Phys. Rev. B 95, 035406 (2017).

    Article  Google Scholar 

  101. Xu, Y. et al. Molecular engineered conjugated polymer with high thermal conductivity. Sci. Adv. 4, eaar3031 (2018).

    Article  CAS  Google Scholar 

  102. Kim, G. H. et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14, 295–300 (2015).

    Article  CAS  Google Scholar 

  103. Miyazaki, Y., Nishiyama, T., Takahashi, H., Ktagiri, J.-I. & Takezawa, Y., Development of highly thermoconductive epoxy composites. In 2009 IEEE Conference on Electrical Insulation and Dielectric Phenomena 638–641 (IEEE, 2009).

  104. Cui, L. et al. Thermal conductance of single-molecule junctions. Nature 572, 628–633 (2019).

    Article  CAS  Google Scholar 

  105. Wang, Z. et al. Ultrafast flash thermal conductance of molecular chains. Science 317, 787–790 (2007).

    Article  CAS  Google Scholar 

  106. Russ, B., Glaudell, A., Urban, J. J., Chabinyc, M. L. & Segalman, R. A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050 (2016).

  107. Duda, J. C., Hopkins, P. E., Shen, Y. & Gupta, M. C. Exceptionally low thermal conductivities of films of the fullerene derivative PCBM. Phys. Rev. Lett. 110, 015902 (2013).

    Article  CAS  Google Scholar 

  108. Liu, J. et al. Ultralow thermal conductivity of atomic/molecular layer-deposited hybrid organic-inorganic zincone thin films. Nano Lett. 13, 5594–5599 (2013).

    Article  CAS  Google Scholar 

  109. Ong, W.-L. & Malen, J. A. Thermal transport in nanostructured organic-inorganic hybrid materials. Annu. Rev. Heat. Transf. 19, 67–126 (2016).

    Article  CAS  Google Scholar 

  110. Yang, J. et al. Solution-processable superatomic thin-films. J. Am. Chem. Soc. 141, 10967–10971 (2019).

    Article  CAS  Google Scholar 

  111. Li, R., Lee, E. & Luo, T. A unified deep neural network potential capable of predicting thermal conductivity of silicon in different phases. Mater. Today Phys. 12, 100181 (2019).

    Article  Google Scholar 

  112. Qian, X., Peng, S., Li, X., Wei, Y. & Yang, R. Thermal conductivity modeling using machine learning potentials: application to crystalline and amorphous silicon. Mater. Today Phys. 10, 100140 (2019).

    Article  Google Scholar 

  113. Ju, S. et al. Designing nanostructures for phonon transport via bayesian optimization. Phys. Rev. 7, 021024 (2017).

    Article  Google Scholar 

  114. Wu, S. et al. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. npj Comput. Mater. 5, 66 (2019).

    Article  CAS  Google Scholar 

  115. Carrete, J., Li, W., Mingo, N., Wang, S. & Curtarolo, S. Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling. Phys. Rev. 4, 011019 (2014).

    Article  CAS  Google Scholar 

  116. Cho, J. et al. Electrochemically tunable thermal conductivity of lithium cobalt oxide. Nat. Commun. 5, 4035 (2014).

    Article  CAS  Google Scholar 

  117. Tomko, J. A. et al. Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials. Nat. Nanotechnol. 13, 959–964 (2018).

    Article  CAS  Google Scholar 

  118. Ihlefeld, J. F. et al. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett. 15, 1791–1795 (2015).

    Article  CAS  Google Scholar 

  119. Shin, J. et al. Light-triggered thermal conductivity switching in azobenzene polymers. Proc. Natl Acad. Sci. USA 116, 5973–5978 (2019).

    Article  CAS  Google Scholar 

  120. Lu, Q. et al. Bi-directional tuning of thermal transport in SrCoOx with electrochemically induced phase transitions. Nat. Mater. 19, 655–662 (2020).

    Article  CAS  Google Scholar 

  121. Menyhart, K. & Krarti, M. Potential energy savings from deployment of dynamic insulation materials for US residential buildings. Build. Environ. 114, 203–218 (2017).

    Article  Google Scholar 

  122. Hao, M., Li, J., Park, S., Moura, S. & Dames, C. Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nat. Energy 3, 899–906 (2018).

    Article  CAS  Google Scholar 

  123. Lyeo, H.-K. et al. Thermal conductivity of phase-change material Ge2Sb2Te5. Appl. Phys. Lett. 89, 151904 (2006).

    Article  CAS  Google Scholar 

  124. Caccia, M. et al. Ceramic-metal composites for heat exchangers in concentrated solar power plants. Nature 562, 406–409 (2018).

    Article  CAS  Google Scholar 

  125. Glassbrenner, C. J. & Slack, G. A. Thermal conductivity of silicon and germanium from 3°K to the melting point. Phys. Rev. 134, A1058–A1069 (1964).

    Article  Google Scholar 

  126. Allen, P. B., Feldman, J. L., Fabian, J. & Wooten, F. Diffusons, locons and propagons: character of atomie yibrations in amorphous Si. Philos. Mag. B 79, 1715–1731 (1999).

    Article  CAS  Google Scholar 

  127. Pompe, G. & Hegenbarth, E. Thermal conductivity of amorphous Si at low temperatures. Phys. Status Solidi B 47, 103–108 (1988).

    Article  Google Scholar 

  128. Cahill, D. G., Fischer, H. E., Klitsner, T., Swartz, E. T. & Pohl, R. O. Thermal conductivity of thin films: measurements and understanding. J. Vac. Sci. Technol. A 7, 1259–1266 (1989).

    Article  CAS  Google Scholar 

  129. Cahill, D. G., Katiyar, M. & Abelson, J. R. Thermal conductivity of a-Si:H thin films. Phys. Rev. B 50, 6077–6081 (1994).

    Article  CAS  Google Scholar 

  130. McGaughey, A. J. H., Jain, A. & Kim, H.-Y. Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation. J. Appl. Phys. 125, 011101 (2019).

    Article  CAS  Google Scholar 

  131. Shiomi, J., Esfarjani, K. & Chen, G. Thermal conductivity of half-Heusler compounds from first-principles calculations. Phys. Rev. B 84, 104302 (2011).

    Article  CAS  Google Scholar 

  132. Johnson, J. A. et al. Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys. Rev. Lett. 110, 025901 (2013).

    Article  CAS  Google Scholar 

  133. Hu, Y., Zeng, L., Minnich, A. J., Dresselhaus, M. S. & Chen, G. Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 10, 701–706 (2015).

    Article  CAS  Google Scholar 

  134. Chen, K. et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 367, 555–559 (2020).

    Article  CAS  Google Scholar 

  135. Morelli, D. T. & Slack, G. A. in High Thermal Conductivity Materials (eds Shindé, S. L. & Goela, J. S.) Ch. 2, 37–68 (Springer, 2005).

  136. Dames, C. Ultrahigh thermal conductivity confirmed in boron arsenide. Science 361, 549–550 (2018).

    Article  CAS  Google Scholar 

  137. Giri, A. & Hopkins, P. Achieving a better heat conductor. Nat. Mater. 19, 481–490 (2020).

    Article  CAS  Google Scholar 

  138. Kang, J. S., Wu, H. & Hu, Y. Thermal properties and phonon spectral characterization of synthetic boron phosphide for high thermal conductivity applications. Nano Lett. 17, 7507–7514 (2017).

    Article  CAS  Google Scholar 

  139. Qian, X., Jiang, P. & Yang, R. Anisotropic thermal conductivity of 4H and 6H silicon carbide measured using time-domain thermoreflectance. Mater. Today Phys. 3, 70–75 (2017).

    Article  Google Scholar 

  140. Cuffe, J. et al. Reconstructing phonon mean-free-path contributions to thermal conductivity using nanoscale membranes. Phys. Rev. B 91, 245423 (2015).

    Article  CAS  Google Scholar 

  141. Liu, W. & Asheghi, M. Thermal conductivity measurements of ultra-thin single crystal silicon layers. J. Heat. Transf. 128, 75–83 (2006).

    Article  CAS  Google Scholar 

  142. Asheghi, M., Leung, Y. K., Wong, S. S. & Goodson, K. E. Phonon-boundary scattering in thin silicon layers. Appl. Phys. Lett. 71, 1798–1800 (1997).

    Article  CAS  Google Scholar 

  143. Goodson, K. E. & Ju, Y. S. Heat conduction in novel electronic films. Annu. Rev. Mater. Sci. 29, 261–293 (1999).

    Article  CAS  Google Scholar 

  144. Li, D. et al. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003).

    Article  CAS  Google Scholar 

  145. Dames, C. & Chen, G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J. Appl. Phys. 95, 682–693 (2004).

    Article  CAS  Google Scholar 

  146. Choy, C. L., Wong, Y. W., Yang, G. W. & Kanamoto, T. Elastic modulus and thermal conductivity of ultradrawn polyethylene. J. Polym. Sci. B 37, 3359–3367 (1999).

    Article  CAS  Google Scholar 

  147. Piraux, L., Kinany-Alaoui, M., Issi, J. P., Begin, D. & Billaud, D. Thermal conductivity of an oriented polyacetylene film. Solid State Commun. 79, 427–429 (1989).

    Article  Google Scholar 

  148. Anderson, P. W., Halperin, B. I. & Varma, C. M. Anomalous low-temperature thermal properties of glasses and spin glasses. Philos. Mag. 25, 1–9 (1972).

    Article  CAS  Google Scholar 

  149. Cahill, D., Watson, S. & Pohl, R. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992).

    Article  CAS  Google Scholar 

  150. Wang, X., Liman, C. D., Treat, N. D., Chabinyc, M. L. & Cahill, D. G. Ultralow thermal conductivity of fullerene derivatives. Phys. Rev. B 88, 075310 (2013).

    Article  CAS  Google Scholar 

  151. Chen, Z. & Dames, C. An anisotropic model for the minimum thermal conductivity. Appl. Phys. Lett. 107, 193104 (2015).

    Article  CAS  Google Scholar 

  152. Giannozzi, P., de Gironcoli, S., Pavone, P. & Baroni, S. Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B 43, 7231–7242 (1991).

    Article  CAS  Google Scholar 

  153. Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Univ. Press, 2001).

  154. Debernardi, A., Baroni, S. & Molinari, E. Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory. Phys. Rev. Lett. 75, 1819–1822 (1995).

    Article  CAS  Google Scholar 

  155. Li, W., Carrete, J., A. Katcho, N. & Mingo, N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014).

    Article  CAS  Google Scholar 

  156. Yang, F. & Dames, C. Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures. Phys. Rev. B 87, 035437 (2013).

    Article  CAS  Google Scholar 

  157. Dames, C. & Chen, G. in Thermoelectrics Handbook: Macro to Nano (ed. Rowe, D. M.) Ch. 42 (Taylor & Francis, 2006).

  158. Esfarjani, K., Chen, G. & Stokes, H. T. Heat transport in silicon from first-principles calculations. Phys. Rev. B 84, 085204 (2011).

    Article  CAS  Google Scholar 

  159. Lee, S., Broido, D., Esfarjani, K. & Chen, G. Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 6, 6290 (2015).

    Article  CAS  Google Scholar 

  160. Cepellotti, A. et al. Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 6400 (2015).

    Article  CAS  Google Scholar 

  161. Mingo, N., Hauser, D., Kobayashi, N. P., Plissonier, M. & Shakouri, A. ‘Nanoparticle-in-alloy’ approach to efficient thermoelectrics: silicides in SiGe. Nano Lett. 9, 711–715 (2009).

    Article  CAS  Google Scholar 

  162. Tadano, T. & Tsuneyuki, S. Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO3 with first-principles anharmonic force constants. Phys. Rev. B 92, 054301 (2015).

    Article  CAS  Google Scholar 

  163. Liao, B. et al. Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: a first-principles study. Phys. Rev. Lett. 114, 115901 (2015).

    Article  CAS  Google Scholar 

  164. Zhou, J. et al. Ab initio optimization of phonon drag effect for lower-temperature thermoelectric energy conversion. Proc. Natl Acad. Sci. USA 112, 14777–14782 (2015).

    Article  CAS  Google Scholar 

  165. Cahill, D. G. & Pohl, R. O. Thermal conductivity of amorphous solids above the plateau. Phys. Rev. B 35, 4067–4073 (1987).

    Article  CAS  Google Scholar 

  166. Dames, C. Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods. Annu. Rev. Heat. Transf. 16, 7–49 (2013).

    Article  Google Scholar 

  167. Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004).

    Article  CAS  Google Scholar 

  168. Schmidt, A. J., Cheaito, R. & Chiesa, M. A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev. Sci. Instrum. 80, 094901 (2009).

    Article  CAS  Google Scholar 

  169. Maznev, A. A., Johnson, J. A. & Nelson, K. A. Onset of nondiffusive phonon transport in transient thermal grating decay. Phys. Rev. B 84, 195206 (2011).

    Article  CAS  Google Scholar 

  170. Jiang, P., Qian, X. & Yang, R. Tutorial: time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J. Appl. Phys. 124, 161103 (2018).

    Article  CAS  Google Scholar 

  171. Qian, X., Ding, Z., Shin, J., Schmidt, A. J. & Chen, G. Accurate measurement of in-plane thermal conductivity of layered materials without metal film transducer using frequency domain thermoreflectance. Rev. Sci. Instrum. 91, 064903 (2020).

    Article  CAS  Google Scholar 

  172. Koh, Y. K. & Cahill, D. G. Frequency dependence of the thermal conductivity of semiconductor alloys. Phys. Rev. B 76, 075207 (2007).

    Article  CAS  Google Scholar 

  173. Hua, C., Chen, X., Ravichandran, N. K. & Minnich, A. J. Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces. Phys. Rev. B 95, 205423 (2017).

    Article  Google Scholar 

  174. Liao, B., Maznev, A. A., Nelson, K. A. & Chen, G. Photo-excited charge carriers suppress sub-terahertz phonon mode in silicon at room temperature. Nat. Commun. 7, 13174 (2016).

    Article  CAS  Google Scholar 

  175. Zhou, J. et al. Direct observation of large electron-phonon interaction effect on phonon heat transport. Nat. Commun. 11, 6040 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This Review is built on the work of the community and many former students, post-docs and collaborators that G.C. has worked with; and financial support from the Office of Naval Research under Multidisciplinary University Research Initiative grant N00014-16-1-2436 (for high thermal conductivity materials), and US Department of Energy, Basic Energy Sciences award no. DE-FG02-02ER45977 (polymers), MRSEC Program of the National Science Foundation under award number DMR-1419807 (oxides and thermal regulation), and NSF under award CBET 1851052 (thermal metrology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Zhigang Shuai, Sebastian Volz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021). https://doi.org/10.1038/s41563-021-00918-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-00918-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing