Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Complex nanostructures in diamond

Meteoritic diamonds and synthesized diamond-related materials contain a wide variety of complex nanostructures. This Comment highlights and classifies this structural complexity by a systematic hierarchical approach, and discusses the perspectives on nanostructure and properties engineering of diamond-related materials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural complexity in diamond.
Fig. 2: An energy–volume (EV) map of crystalline carbon structures.
Fig. 3: Projected properties of diamond-related materials containing complex nanostructures.

References

  1. Hazen, R. M., Downs, R. T., Jones, A. P. & Kah, L. Rev. Mineral. Geochem. 75, 7–46 (2013).

    Article  CAS  Google Scholar 

  2. Linde, O., Geyler, O. & Epstein, A. The Global Diamond Industry (Bain & Company, 2018).

  3. Brazkhkin, V. V. & Solozhenko, V. L. J. Appl. Phys. 125, 130901 (2019).

    Article  Google Scholar 

  4. Avery, P. et al. npj Comput. Mater. 5, 89 (2019).

    Article  Google Scholar 

  5. Falcao, E. H. L. & Wudl, F. J. Chem. Technol. Biotechnol. 82, 524–531 (2007).

    Article  CAS  Google Scholar 

  6. Geim, A. K. & Novoselov, K. S. Nat. Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  7. Kaiser, K. et al. Science 365, 1299–1301 (2020).

    Article  Google Scholar 

  8. Oganov, A. R., Hemley, R. J., Hazen, R. M. & Jones, A. P. Rev. Mineral. Geochem. 75, 47–77 (2013).

    Article  CAS  Google Scholar 

  9. Hoffmann, R., Kabanov, A. A., Golov, A. A. & Proserpio, D. M. Angew. Chem. Int. Ed. 55 37, 10962–10976 (2016).

    Article  Google Scholar 

  10. Salzmann, C. G., Murray, B. J. & Shephard, J. J. Diam. Relat Mater. 59, 69–72 (2015).

    Article  CAS  Google Scholar 

  11. Murri, M. et al. Sci. Rep. 9, 10334 (2019).

    Article  Google Scholar 

  12. Németh, P. et al. Nat. Commun. 5, 5447 (2014).

    Article  Google Scholar 

  13. Garvie, L. A. J., Németh, P. & Buseck, P. R. Am. Mineral. 99, 531–538 (2014).

    Article  Google Scholar 

  14. Németh, P. et al. Nano Lett. 20, 3611–3619 (2020).

    Article  Google Scholar 

  15. Németh, P., Garvie, L. A. J. & Buseck, P. R. Sci. Rep. 5, 18381 (2015).

    Article  Google Scholar 

  16. Németh, P. & Garvie, L. A. J. Am. Mineral. 105, 276–281 (2020).

    Article  Google Scholar 

  17. Huang, Q. et al. Nature 510, 250–253 (2014).

    Article  CAS  Google Scholar 

  18. Baek, W. et al. Nano Lett. 19, 1570–1576 (2019).

    Article  CAS  Google Scholar 

  19. Bundy, F. P. & Kasper, J. S. J. Chem. Phys. 46, 3437–3446 (1967).

    Article  CAS  Google Scholar 

  20. Hanneman, R. E., Strong, H. M. & Bundy, F. P. Science 155, 995–997 (1967).

    Article  CAS  Google Scholar 

  21. Frondel, C. & Marvin, U. B. Nature 217, 587–589 (1967).

    Article  Google Scholar 

  22. Kraus, D. et al. Nat. Commun. 7, 10970 (2016).

    Article  CAS  Google Scholar 

  23. Turneaure, S. J., Sharma, S. M., Volz, T. J., Winey, J. M. & Gupta, Y. M. Sci. Adv. 3, eaao3561 (2017).

    Article  Google Scholar 

  24. Ohnishi, H. & Nasu, K. Phys. Rev. B 80, 014112 (2009).

    Article  Google Scholar 

  25. Shi, X. et al. ACS Appl. Nano Mater. 1, 6320–6326 (2018).

    Article  CAS  Google Scholar 

  26. Zhang, S. et al. ACS Appl. Mater. Interfaces 12, 4135–4142 (2020).

    Article  CAS  Google Scholar 

  27. Brett, R. & Higgins, G. T. Geochim. Cosmochim. Acta 33, 1473–1484 (1969).

    Article  CAS  Google Scholar 

  28. Dou, X. et al. Mater. Today 23, 87–104 (2019).

    Article  CAS  Google Scholar 

  29. Wei, Q. & Narayan, J. Int. Mater. Rev. 45, 133–164 (2000).

    Article  CAS  Google Scholar 

  30. Xu, Q. & Zhao, X. Phys. Rev. B 86, 155417 (2012).

    Article  Google Scholar 

  31. Shevchenko, V. Ya. & Madison, A. E. Glass Phys. Chem. 32, 385–389 (2006).

    Article  CAS  Google Scholar 

  32. Hofmeister, H. in Encyclopedia of Nanoscience and Nanotechnology Vol. 3 (ed. Nalwa, H. S.) 431–452 (American Scientific, 2004).

  33. De Vita, A. et al. Nature 379, 523–526 (1996).

    Article  Google Scholar 

  34. Stefanescu, D. M., Alonso, G., Larrañaga, P., De la Fuente, E. & Suarez, R. A. Int. J. Metalcasting 12, 722–752 (2018).

    Article  CAS  Google Scholar 

  35. Yang, J., Hu, P. & Yu, G. APL Mater. 7, 020901 (2019).

    Article  Google Scholar 

  36. Xie, Y.-P., Zhang, X.-J. & Liu, Z.-P. J. Am. Chem. Soc. 139, 2545–2548 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.N. acknowledges support from the Hungarian National Research, Development and Innovation Office project NKFIH_KH126502, the János Bolyai Research Scholarship, and ÚNKP-19-4-PE-4 New National Excellence Program of the Ministry for Innovation and Technology. L.A.J.G. was supported by NASA Emerging Worlds grant NNX17AE56G. C.G.S. received funding from the European Research Council under the European Union Horizon 2020 research and innovation programme (grant agreement no. 725271). M.M. was supported by the IMPACt (R164WEJAHH) and the TRUE DEPTHS (ERC grant 714936) projects to Matteo Alvaro. M.M. also received support from the Barringer Family Fund for Meteorite Impact Research. We are grateful to the staff and for use of the facilities in the John M. Cowley Center for High Resolution Electron Microscopy at Arizona State University. Our computational studies made use of the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk) via the UK’s HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/ L000202/1). K.M. also acknowledges HPC resources provided by the UK Materials and Molecular Modelling Hub, partly funded by EPSRC (EP/P020194/1), and UCL Grace and Kathleen HPC Facilities and associated support services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul F. McMillan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Németh, P., McColl, K., Garvie, L.A.J. et al. Complex nanostructures in diamond. Nat. Mater. 19, 1126–1131 (2020). https://doi.org/10.1038/s41563-020-0759-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0759-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing