Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Length scales of interfacial coupling between metal and insulator phases in oxides

Abstract

Controlling phase transitions in transition metal oxides remains a central feature of both technological and fundamental scientific relevance. A well-known example is the metal–insulator transition, which has been shown to be highly controllable. However, the length scale over which these phases can be established is not yet well understood. To gain insight into this issue, we atomically engineered an artificially phase-separated system through fabricating epitaxial superlattices that consist of SmNiO3 and NdNiO3, two materials that undergo a metal-to-insulator transition at different temperatures. We demonstrate that the length scale of the interfacial coupling between metal and insulator phases is determined by balancing the energy cost of the boundary between a metal and an insulator and the bulk phase energies. Notably, we show that the length scale of this effect exceeds that of the physical coupling of structural motifs, which introduces a new framework for interface-engineering properties at temperatures against the bulk energetics.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Detailed characterization of the ((SmNiO3)m/(NdNiO3)m)L superlattices.
Fig. 2: Transport measurements.
Fig. 3: DFT + U and STEM structural analyses.
Fig. 4: Experimental TMI versus wavelength and output of the Landau model.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The computer codes and algorithm used to generate the results reported in the Article are available from the corresponding author upon reasonable request.

References

  1. Khomskii, D. I. Transition Metal Compounds (Cambridge Univ. Press, 2014).

  2. Lee, D. et al. Isostructural metal–insulator transition in VO2. Science 362, 1037–1040 (2018).

    CAS  Google Scholar 

  3. Cen, C. et al. Nanoscale control of an interfacial metal–insulator transition at room temperature. Nat. Mater. 7, 298–302 (2008).

    CAS  Google Scholar 

  4. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006).

    CAS  Google Scholar 

  5. Zubko, P., Gariglio, S., Gabay, M., Ghosez, P. & Triscone, J.-M. Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141–165 (2011).

    CAS  Google Scholar 

  6. Mattoni, G. et al. Striped nanoscale phase separation at the metal–insulator transition of heteroepitaxial nickelates. Nat. Commun. 7, 13141 (2016).

    CAS  Google Scholar 

  7. Post, K. W. et al. Coexisting first- and second-order electronic phase transitions in a correlated oxide. Nat. Phys. 14, 1056–1071 (2018).

    CAS  Google Scholar 

  8. Lacorre, P. et al. Synthesis, crystal structure, and properties of metallic PrNiO3: comparison with metallic NdNiO3 and semiconducting SmNiO3. J. Solid State Chem. 91, 225–237 (1991).

    CAS  Google Scholar 

  9. Torrance, J., Lacorre, P., Nazzal, A., Ansaldo, E. & Niedermayer, C. Systematic study of insulator–metal transitions in perovskites RNiO3 (R = Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Phys. Rev. B 45, 8209–8212 (1992).

    CAS  Google Scholar 

  10. Middey, S. et al. Physics of ultrathin films and heterostructures of rare-earth nickelates. Annu. Rev. Mater. Res. 46, 305–334 (2016).

    CAS  Google Scholar 

  11. Catalano, S. et al. Rare-earth nickelates RNiO3: thin films and heterostructures. Rep. Prog. Phys. 81, 046501 (2017).

    Google Scholar 

  12. Medarde, M. L. Structural, magnetic and electronic properties of RNiO3 perovskites (R = rare earth). J. Condens. Matter Phys. 9, 1679–1707 (1997).

    CAS  Google Scholar 

  13. Catalan, G. Progress in perovskite nickelate research. Phase Transit. 81, 729–749 (2008).

    CAS  Google Scholar 

  14. Mercy, A., Bieder, J., Íñiguez, J. & Ghosez, P. Structurally triggered metal–insulator transition in rare-earth nickelates. Nat. Commun. 8, 1677 (2017).

    Google Scholar 

  15. Alonso, J. A. et al. Charge disproportionation in RNiO3 perovskites: simultaneous metal–insulator and structural transition in YNiO3. Phys. Rev. Lett. 82, 3871–3874 (1999).

    CAS  Google Scholar 

  16. Scherwitzl, R. et al. Electric-field control of the metal–insulator transition in ultrathin NdNiO3 films. Adv. Mater. 22, 5517–5520 (2010).

    CAS  Google Scholar 

  17. May, S. J. et al. Control of octahedral rotations in (LaNiO3)n/(SrMnO3)m superlattices. Phys. Rev. B 83, 153411 (2011).

    Google Scholar 

  18. Rondinelli, J. M. & Spaldin, N. A. Structure and properties of functional oxide thin films: insights from electronic-structure calculations. Adv. Mater. 23, 3363–3381 (2011).

    CAS  Google Scholar 

  19. Rondinelli, J. M., May, S. J. & Freeland, J. W. Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull. 37, 261–270 (2012).

    CAS  Google Scholar 

  20. Chakhalian, J., Millis, A. J. & Rondinelli, J. Whither the oxide interface. Nat. Mater. 11, 92–94 (2012).

    CAS  Google Scholar 

  21. Moon, E. J. et al. Spatial control of functional properties via octahedral modulations in complex oxide superlattices. Nat. Commun. 5, 5710 (2014).

    CAS  Google Scholar 

  22. Aso, R., Kan, D., Shimakawa, Y. & Kurata, H. Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Sci. Rep. 3, 2214 (2013).

    Google Scholar 

  23. Liao, Z. et al. Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling. Nat. Mater. 15, 425–431 (2016).

    CAS  Google Scholar 

  24. Liao, Z. et al. Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching. Proc. Natl Acad. Sci. USA 115, 9515–9520 (2018).

    CAS  Google Scholar 

  25. Yuan, Y. et al. Three-dimensional atomic scale electron density reconstruction of octahedral tilt epitaxy in functional perovskites. Nat. Commun. 9, 5220 (2018).

    CAS  Google Scholar 

  26. Zhang, J. Y., Hwang, J., Raghavan, S. & Stemmer, S. Symmetry lowering in extreme-electron-density perovskite quantum wells. Phys. Rev. Lett. 110, 256401 (2013).

    Google Scholar 

  27. Subedi, A., Peil, O. E. & Georges, A. Low-energy description of the metal–insulator transition in the rare-earth nickelates. Phys. Rev. B 91, 075128 (2015).

    Google Scholar 

  28. Seth, P. et al. Renormalization of effective interactions in a negative charge transfer insulator. Phys. Rev. B 96, 205139 (2017).

    Google Scholar 

  29. Peil, O. E., Hampel, A., Ederer, C. & Georges, A. Mechanism and control parameters of the coupled structural and metal–insulator transition in nickelates. Phys. Rev. B 99, 245127 (2019).

    CAS  Google Scholar 

  30. Georgescu, A. B., Peil, O. E., Disa, A. S., Georges, A. & Millis, A. J. Disentangling lattice and electronic contributions to the metal–insulator transition from bulk vs. layer confined RNiO3. Proc. Natl Acad. Sci. USA 116, 14434–14439 (2019).

    CAS  Google Scholar 

  31. Catalan, G. Metal–insulator transition in NdNiO3 thin films. Phys. Rev. B 62, 7892–7900 (2000).

    CAS  Google Scholar 

  32. Jones, L. et al. Smart Align—a new tool for robust non-rigid registration of scanning microscope data. Adv. Struct. Chem. Imag. 1, 8 (2015).

    Google Scholar 

  33. Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv. Struct. Chem. Imag. 3, 9 (2017).

    Google Scholar 

  34. Bosman, M., Watanabe, M., Alexander, D. T. & Keast, V. J. Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy 106, 1024–1032 (2006).

    CAS  Google Scholar 

  35. Lucas, G., Burdet, P., Cantoni, M. & Hebert, C. Multivariate statistical analysis as a tool for the segmentation of 3D spectral data. Micron 52–53, 49–56 (2013).

    Google Scholar 

  36. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  37. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  38. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  39. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Google Scholar 

  40. Varignon, J., Grisolia, M. N., Íñiguez, J., Barthélémy, A. & Bibes, M. Complete phase diagram of rare-earth nickelates from first-principles. npj Quantum Mater. 2, 21 (2017).

    Google Scholar 

  41. Hampel, A. & Ederer, C. Interplay between breathing mode distortion and magnetic order in rare-earth nickelates RNiO3 within DFT + U. Phys. Rev. B 96, 165130 (2017).

    Google Scholar 

  42. Loschen, C., Carrasco, J., Neyman, K. M. & Illas, F. First-principles LDA + U and GGA + U study of cerium oxides: dependence on the effective U parameter. Phys. Rev. B. 75, 035115 (2007).

    Google Scholar 

  43. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    CAS  Google Scholar 

  44. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

  45. Momma, K. & Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Strand and M. Zingl for fruitful discussions and acknowledge M. Lopes and S. Muller for their invaluable technical support. This work was partly supported by the Swiss National Science Foundation through Division II. The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013)/ERC Grant Agreement 319286 Q-MAC). The authors acknowledge access to the electron microscopy facilities at the Interdisciplinary Centre for Electron Microscopy, École Polytechnique Fédérale de Lausanne. The Flatiron Institute is a division of the Simons Foundation. P.G., Y.Z. and A.M. acknowledge support from ULiège (ARC project AIMED), F.R.S.-FNRS Belgium (FRIA grant No 1.E.122.18 and PDR PROMOSPAN grant no. T.0107.20) and M-ERA.NET project SIOX, as well as access to computational resources provided by the Consortium des Equipements de Calcul Intensif (CECI), funded by the Belgian F.R.S.-FNRS under grant no. 2.5020.11 and the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region of Belgium under grant no. 1117545. M.G. acknowledges support by the Swiss National Science Foundation under grant no. PP00P2_170564.

Author information

Authors and Affiliations

Authors

Contributions

M.G. and J.-M.T. conceived the project. C.D. fabricated the superlattices and carried out the transport measurements with A.W. The Landau model was developed by A.B.G., A.G. and A.J.M. Transmission electron microscopy was performed and analysed by B.M. and D.T.L.A. The first-principles calculations were carried out by Y.Z., A.M. and P.G. C.D. and J.F. wrote the manuscript with input from all the authors. All the authors contributed to the analysis and interpretation of the experimental results.

Corresponding author

Correspondence to Claribel Domínguez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, discussion sections 1–8, Table 1 and reference list.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Domínguez, C., Georgescu, A.B., Mundet, B. et al. Length scales of interfacial coupling between metal and insulator phases in oxides. Nat. Mater. 19, 1182–1187 (2020). https://doi.org/10.1038/s41563-020-0757-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0757-x

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing