Perspectives for electrochemical capacitors and related devices


Electrochemical capacitors can store electrical energy harvested from intermittent sources and deliver energy quickly, but their energy density must be increased if they are to efficiently power flexible and wearable electronics, as well as larger equipment. This Review summarizes progress in the field of materials for electrochemical capacitors over the past decade as well as outlines key perspectives for future research. We describe electrical double-layer capacitors based on high-surface-area carbons, pseudocapacitive materials such as oxides and the two-dimensional inorganic compounds known as MXenes, and emerging microdevices for the Internet of Things. We show that new nanostructured electrode materials and matching electrolytes are required to maximize the amount of energy and speed of delivery, and different manufacturing methods will be needed to meet the requirements of the future generation of electronic devices. Scientifically justified metrics for testing, comparison and optimization of various kinds of electrochemical capacitors are provided and explained.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Ragone plot.
Fig. 2: Carbon-based electrical double-layer capacitors.
Fig. 3: Current performance of carbon-based electrical double-layer capacitors and perspectives for improvements.

O. Fontaine

Fig. 4: Conceptual presentation of redox capacitance.
Fig. 5: Lithium-ion capacitors.
Fig. 6: Micro-supercapacitors for current and future technologies.


  1. 1.

    Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008).

    CAS  Google Scholar 

  2. 2.

    Delmas, C. Sodium and sodium-ion batteries: 50 years of research. Adv. Energy Mater. 8, 1703137 (2018).

    Google Scholar 

  3. 3.

    Li, M., Lu, J., Chen, Z. & Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018).

    Google Scholar 

  4. 4.

    Palacin, M. R. & de Guibert, A. Why do batteries fail? Science 351, 1253292 (2016).

    CAS  Google Scholar 

  5. 5.

    Augustyn, V., Simon, P. & Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014).

    CAS  Google Scholar 

  6. 6.

    Liu, C. F., Liu, Y. C., Yi, T. Y. & Hu, C. C. Carbon materials for high-voltage supercapacitors. Carbon 145, 529–548 (2019).

    CAS  Google Scholar 

  7. 7.

    Wang, F. X. et al. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46, 6816–6854 (2017).

    CAS  Google Scholar 

  8. 8.

    Wang, Y. G., Song, Y. F. & Xia, Y. Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016).

    CAS  Google Scholar 

  9. 9.

    Wu, H. et al. Graphene based architectures for electrochemical capacitors. Energy Storage Mater. 5, 8–32 (2016).

    Google Scholar 

  10. 10.

    Lin, Z. et al. Materials for supercapacitors: when Li-ion battery power is not enough. Mater. Today 21, 419–436 (2018).

    CAS  Google Scholar 

  11. 11.

    Noori, A., El-Kady, M. F., Rahmanifar, M. S., Kaner, R. B. & Mousavi, M. F. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48, 1272–1341 (2019).

    CAS  Google Scholar 

  12. 12.

    Salanne, M. et al. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016).

    CAS  Google Scholar 

  13. 13.

    Miller, J. R., Outlaw, R. A. & Holloway, B. C. Graphene double-layer capacitor with ac line-filtering performance. Science 329, 1637–1639 (2010).

    CAS  Google Scholar 

  14. 14.

    Horn, M., MacLeod, J., Liu, M., Webb, J. & Motta, N. Supercapacitors: a new source of power for electric cars? Econ. Anal. Policy 61, 93–103 (2019).

    Google Scholar 

  15. 15.

    Ultracapacitor modules. Maxwell Technologies (accessed May 2020).

  16. 16.

    LS Ultracapacitor (accessed May 2020).

  17. 17.

    Skeleton Technologies (accessed May 2020).

  18. 18.

    Gogotsi, Y. & Simon, P. True performance metrics in electrochemical energy storage. Science 334, 917–918 (2011).

    CAS  Google Scholar 

  19. 19.

    Mathis, T. S. et al. Energy storage data reporting in perspective — guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 9, 1902007 (2019).

    CAS  Google Scholar 

  20. 20.

    Conway, B. Electrochemical Supercapacitors; Scientific Fundamentals and Technological Applications (Springer, 1999).

  21. 21.

    Shao, H., Wu, Y.-C., Lin, Z., Taberna, P.-L. & Simon, P. Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 49, 3005–3039 (2020).

    CAS  Google Scholar 

  22. 22.

    Lin, T. Q. et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015).

    CAS  Google Scholar 

  23. 23.

    Beguin, F., Presser, V., Balducci, A. & Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014).

    CAS  Google Scholar 

  24. 24.

    Zhong, C. et al. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015).

    CAS  Google Scholar 

  25. 25.

    Miller, J. R. & Butler, S. M. Electrical characteristics of large state-of-the-art electrochemical capacitors. Electrochim. Acta 307, 564–572 (2019).

    CAS  Google Scholar 

  26. 26.

    Xiong, G., Kundu, A. & Fisher, S. T. Thermal Effects in Supercapacitors (Springer, 2015).

  27. 27.

    Prehal, C. et al. Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nat. Energy 2, 16215 (2017).

    CAS  Google Scholar 

  28. 28.

    Forse, A. C. et al. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy. Nat. Energy 2, 16216 (2017).

    Google Scholar 

  29. 29.

    Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).

    CAS  Google Scholar 

  30. 30.

    Forse, A. C., Merlet, C., Griffin, J. M. & Grey, C. P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016).

    CAS  Google Scholar 

  31. 31.

    Griffin, J. M. et al. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat. Mater. 14, 812–819 (2015).

    CAS  Google Scholar 

  32. 32.

    Deschamps, M. et al. Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR. Nat. Mater. 12, 351–358 (2013).

    CAS  Google Scholar 

  33. 33.

    Boukhalfa, S. et al. In situ small angle neutron scattering revealing ion sorption in microporous carbon electrical double layer capacitors. ACS Nano 8, 2495–2503 (2014).

    CAS  Google Scholar 

  34. 34.

    Batisse, N. & Raymundo-Pinero, E. Pulsed electrochemical mass spectrometry for operando tracking of interfacial processes in small-time-constant electrochemical devices such as supercapacitors. ACS Appl. Mater. Interfaces 9, 41224–41232 (2017).

    CAS  Google Scholar 

  35. 35.

    Kim, J. et al. Nondisruptive in situ Raman analysis for gas evolution in commercial supercapacitor cells. Electrochim. Acta 219, 447–452 (2016).

    CAS  Google Scholar 

  36. 36.

    Richey, F. W., Dyatkin, B., Gogotsi, Y. & Elabd, Y. A. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry. J. Am. Chem. Soc. 135, 12818–12826 (2013).

    CAS  Google Scholar 

  37. 37.

    Kondrat, S., Wu, P., Qiao, R. & Kornyshev, A. A. Accelerating charging dynamics in subnanometre pores. Nat. Mater. 13, 387–393 (2014).

    CAS  Google Scholar 

  38. 38.

    Pean, C. et al. On the dynamics of charging in nanoporous carbon-based supercapacitors. ACS Nano 8, 1576–1583 (2014).

    CAS  Google Scholar 

  39. 39.

    Merlet, C. et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat. Mater. 11, 306–310 (2012).

    CAS  Google Scholar 

  40. 40.

    Kondrat, S. & Kornyshev, A. Superionic state in double-layer capacitors with nanoporous electrodes. J. Phys. Condens. Matter 23, 022201 (2011).

    CAS  Google Scholar 

  41. 41.

    Bi, S. et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat. Mater. 19, 552–558 (2020).

    CAS  Google Scholar 

  42. 42.

    Tsai, W. Y., Taberna, P. L. & Simon, P. Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons. J. Am. Chem. Soc. 136, 8722–8728 (2014).

    CAS  Google Scholar 

  43. 43.

    Shpigel, N., Levi, M. D., Sigalov, S., Daikhin, L. & Aurbach, D. In situ real-time mechanical and morphological characterization of electrodes for electrochemical energy storage and conversion by electrochemical quartz crystal microbalance with dissipation monitoring. Acc. Chem. Res. 51, 69–79 (2018).

    CAS  Google Scholar 

  44. 44.

    Shpigel, N. et al. In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes. Nat. Mater. 15, 570–575 (2016).

    CAS  Google Scholar 

  45. 45.

    Le, T. et al. Unveiling the ionic exchange mechanisms in vertically-oriented graphene nanosheet supercapacitor electrodes with electrochemical quartz crystal microbalance and ac-electrogravimetry. Electrochem. Commun. 93, 5–9 (2018).

    CAS  Google Scholar 

  46. 46.

    Umeda, K., Kobayashi, K., Minato, T. & Yamada, H. Atomic-scale three-dimensional local solvation structures of ionic liquids. J. Phys. Chem. Lett. 11, 1343–1348 (2020).

    CAS  Google Scholar 

  47. 47.

    Tsai, W.-Y. et al. Hysteretic order–disorder transitions of ionic liquid double layer structure on graphite. Nano Energy 60, 886–893 (2019).

    CAS  Google Scholar 

  48. 48.

    Ye, J. L. et al. Charge storage mechanisms of single-layer graphene in ionic liquid. J. Am. Chem. Soc. 141, 16559–16563 (2019).

    CAS  Google Scholar 

  49. 49.

    Mao, X. et al. Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces. Nat. Mater. 18, 1350–1357 (2019).

    CAS  Google Scholar 

  50. 50.

    Jackel, N., Simon, P., Gogotsi, Y. & Presser, V. Increase in capacitance by subnanometer pores in carbon. ACS Energy Lett. 1, 1262–1265 (2016).

    Google Scholar 

  51. 51.

    Yan, R. Y., Antonietti, M. & Oschatz, M. Toward the experimental understanding of the energy storage mechanism and ion dynamics in ionic liquid based supercapacitors. Adv. Energy Mater. 8, 1800026 (2018).

    Google Scholar 

  52. 52.

    Antonietti, M., Chen, X. D., Yan, R. Y. & Oschatz, M. Storing electricity as chemical energy: beyond traditional electrochemistry and double-layer compression. Energy Environ. Sci. 11, 3069–3074 (2018).

    Google Scholar 

  53. 53.

    Futamura, R. et al. Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. Nat. Mater. 16, 1225–1232 (2017).

    CAS  Google Scholar 

  54. 54.

    Bazant, M. Z., Storey, B. D. & Kornyshev, A. A. Double layer in ionic liquids: overscreening versus crowding. Phys. Rev. Lett. 106, 046102 (2011).

    Google Scholar 

  55. 55.

    Liu, Y. M., Merlet, C. & Smit, B. Carbons with regular pore geometry yield fundamental insights into supercapacitor charge storage. ACS Cent. Sci. 5, 1813–1823 (2019).

    CAS  Google Scholar 

  56. 56.

    Redondo, E. et al. Outstanding room-temperature capacitance of biomass-derived microporous carbons in ionic liquid electrolyte. Electrochem. Commun. 79, 5–8 (2017).

    CAS  Google Scholar 

  57. 57.

    Miller, J. R. & Burke, A. F. Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem. Soc. Interface 8, 53–57 (2008).

    Google Scholar 

  58. 58.

    Pognon, G., Brousse, T., Demarconnay, L. & Belanger, D. Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon. J. Power Sources 196, 4117–4122 (2011).

    CAS  Google Scholar 

  59. 59.

    Assresahegn, B. D., Brousse, T. & Belanger, D. Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems. Carbon 92, 362–381 (2015).

    CAS  Google Scholar 

  60. 60.

    Nomura, K., Nishihara, H., Kobayashi, N., Asada, T. & Kyotani, T. 4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls. Energy Environ. Sci. 12, 1542–1549 (2019).

    CAS  Google Scholar 

  61. 61.

    Antonietti, M. & Oschatz, M. The concept of ‘noble, heteroatom-doped carbons,’ their directed synthesis by electronic band control of carbonization, and applications in catalysis and energy materials. Adv. Mater. 30, 1706836 (2018).

    Google Scholar 

  62. 62.

    Schutter, C., Passerini, S., Korth, M. & Balducci, A. Cyano ester as solvent for high voltage electrochemical double layer capacitors. Electrochim. Acta 224, 278–284 (2017).

    Google Scholar 

  63. 63.

    Krummacher, J., Schütter, C., Hess, L. H. & Balducci, A. Non-aqueous electrolytes for electrochemical capacitors. Curr. Opin. Electrochem. 9, 64–69 (2018).

    CAS  Google Scholar 

  64. 64.

    Xie, H. J., Gelinas, B. & Rochefort, D. Redox-active electrolyte supercapacitors using electroactive ionic liquids. Electrochem. Commun. 66, 42–45 (2016).

    CAS  Google Scholar 

  65. 65.

    Mourad, E. et al. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nat. Mater. 16, 446–453 (2017).

    CAS  Google Scholar 

  66. 66.

    Birkl, C. R., Roberts, M. R., McTurk, E., Bruce, P. G. & Howey, D. A. Degradation diagnostics for lithium ion cells. J. Power Sources 341, 373–386 (2017).

    CAS  Google Scholar 

  67. 67.

    Singh, N. et al. Artificial SEI transplantation: a pathway to enabling lithium metal cycling in water-containing electrolyte. ACS Appl. Energy Mater. 2, 8912–8918 (2019).

    CAS  Google Scholar 

  68. 68.

    Son, S. B. et al. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat. Chem. 10, 532–539 (2018).

    CAS  Google Scholar 

  69. 69.

    Brandon, E. J., West, W. C., Smart, M. C., Whitcanack, L. D. & Plett, G. A. Extending the low temperature operational limit of double-layer capacitors. J. Power Sources 170, 225–232 (2007).

    CAS  Google Scholar 

  70. 70.

    Kunze, M. et al. Mixtures of ionic liquids for low temperature electrolytes. Electrochim. Acta 82, 69–74 (2012).

    CAS  Google Scholar 

  71. 71.

    Tsai, W. Y. et al. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80 °C. Nano Energy 2, 403–411 (2013).

    CAS  Google Scholar 

  72. 72.

    Premathilake, D. et al. Fast response, carbon-black-coated, vertically-oriented graphene electric double layer capacitors. J. Electrochem. Soc. 165, A924–A931 (2018).

    CAS  Google Scholar 

  73. 73.

    Miller, J. R. & Outlaw, R. A. Vertically-oriented graphene electric double layer capacitor designs. J. Electrochem. Soc. 162, A5077–A5082 (2015).

    CAS  Google Scholar 

  74. 74.

    Choi, C. et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2020).

    Google Scholar 

  75. 75.

    Lee, H. Y. & Goodenough, J. B. Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, 220–223 (1999).

    CAS  Google Scholar 

  76. 76.

    Brousse, T., Belanger, D. & Long, J. W. To be or not to be pseudocapacitive? J. Electrochem. Soc. 162, A5185–A5189 (2015).

    CAS  Google Scholar 

  77. 77.

    Simon, P., Gogotsi, Y. & Dunn, B. Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014).

    CAS  Google Scholar 

  78. 78.

    Lukatskaya, M. R., Dunn, B. & Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016).

    Google Scholar 

  79. 79.

    Wang, J., Polleux, J., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007).

    CAS  Google Scholar 

  80. 80.

    Ko, J. S., Sassin, M. B., Rolison, D. R. & Long, J. W. Deconvolving double-layer, pseudocapacitance, and battery-like charge-storage mechanisms in nanoscale LiMn2O4 at 3D carbon architectures. Electrochim. Acta 275, 225–235 (2018).

    CAS  Google Scholar 

  81. 81.

    Gibson, A. J. & Donne, S. W. A step potential electrochemical spectroscopy (SPECS) investigation of anodically electrodeposited thin films of manganese dioxide. J. Power Sources 359, 520–528 (2017).

    CAS  Google Scholar 

  82. 82.

    Shao, H., Lin, Z., Xu, K., Taberna, P.-L. & Simon, P. Electrochemical study of pseudocapacitive behavior of Ti3C2Tx MXene material in aqueous electrolytes. Energy Storage Mater. 18, 456–461 (2019).

    Google Scholar 

  83. 83.

    Costentin, C. & Saveant, J. M. Energy storage: pseudocapacitance in prospect. Chem. Sci. 10, 5656–5666 (2019).

    CAS  Google Scholar 

  84. 84.

    Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    CAS  Google Scholar 

  85. 85.

    Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    CAS  Google Scholar 

  86. 86.

    Wang, X. et al. Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4, 241–248 (2019).

    CAS  Google Scholar 

  87. 87.

    Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013).

    CAS  Google Scholar 

  88. 88.

    Lukatskaya, M. R. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).

    CAS  Google Scholar 

  89. 89.

    Ghidiu, M., Lukatskaya, M. R., Zhao, M. Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).

    CAS  Google Scholar 

  90. 90.

    Augustyn, V. et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013).

    CAS  Google Scholar 

  91. 91.

    Girard, H. L., Dunn, B. & Pilon, L. Simulations and interpretation of three-electrode cyclic voltammograms of pseudocapacitive electrodes. Electrochim. Acta 211, 420–429 (2016).

    CAS  Google Scholar 

  92. 92.

    Conway, B. E. Two-dimensional and quasi two-dimensional isotherms for Li intercalation and UPD processes at surfaces. Electrochim. Acta 38, 1249–1258 (1993).

    CAS  Google Scholar 

  93. 93.

    Li, Y. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020).

    Google Scholar 

  94. 94.

    Naoi, K. et al. Ultrafast charge–discharge characteristics of a nanosized core–shell structured LiFePO4 material for hybrid supercapacitor applications. Energy Environ. Sci. 9, 2143–2151 (2016).

    CAS  Google Scholar 

  95. 95.

    Amisse, R. et al. Singular structural and electrochemical properties in highly defective LiFePO4 powders. Chem. Mater. 27, 4261–4273 (2015).

    CAS  Google Scholar 

  96. 96.

    Okubo, M. et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129, 7444–7452 (2007).

    CAS  Google Scholar 

  97. 97.

    Kim, H. S. et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 16, 454–460 (2017).

    CAS  Google Scholar 

  98. 98.

    Wang, R. C. et al. Operando atomic force microscopy reveals mechanics of structural water driven battery-to-pseudocapacitor transition. ACS Nano 12, 6032–6039 (2018).

    CAS  Google Scholar 

  99. 99.

    Mitchell, J. B. et al. Confined interlayer water promotes structural stability for high-rate electrochemical proton intercalation in tungsten oxide hydrates. ACS Energy Lett. 4, 2805–2812 (2019).

    CAS  Google Scholar 

  100. 100.

    Yamada, Y., Wang, J., Ko, S., Watanabe, E. & Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019).

    CAS  Google Scholar 

  101. 101.

    Han, P. X. et al. Lithium ion capacitors in organic electrolyte system: scientific problems, material development, and key technologies. Adv. Energy Mater. 8, 1801243 (2018).

    Google Scholar 

  102. 102.

    Jezowski, P. et al. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat. Mater. 17, 167–173 (2018).

    CAS  Google Scholar 

  103. 103.

    Takami, N. et al. High-energy, fast-charging, long-life lithium-ion batteries using TiNb2O7 anodes for automotive applications. J. Power Sources 396, 429–436 (2018).

    CAS  Google Scholar 

  104. 104.

    Whitmore, A., Agarwal, A. & Xu, L. D. The Internet of Things — a survey of topics and trends. Inform. Syst. Front. 17, 261–274 (2015).

    Google Scholar 

  105. 105.

    Lethien, C., Le Bideau, J. & Brousse, T. Challenges and prospects of 3D micro-supercapacitors for powering the internet of things. Energy Environ. Sci. 12, 96–115 (2019).

    Google Scholar 

  106. 106.

    Huang, P. et al. On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 351, 691–695 (2016).

    CAS  Google Scholar 

  107. 107.

    Kyeremateng, N. A., Brousse, T. & Pech, D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 12, 7–15 (2017).

    CAS  Google Scholar 

  108. 108.

    Negre, L., Daffos, B., Turq, V., Taberna, P. L. & Simon, P. Ionogel-based solid-state supercapacitor operating over a wide range of temperature. Electrochim. Acta 206, 490–495 (2016).

    CAS  Google Scholar 

  109. 109.

    Brachet, M., Brousse, T. & Le Bideau, J. All solid-state symmetrical activated carbon electrochemical double layer capacitors designed with ionogel electrolyte. ECS Electrochem. Lett. 3, A112–A115 (2014).

    CAS  Google Scholar 

  110. 110.

    Sumboja, A. et al. Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem. Soc. Rev. 47, 5919–5945 (2018).

    CAS  Google Scholar 

  111. 111.

    El-Kady, M. F., Strong, V., Dubin, S. & Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012).

    CAS  Google Scholar 

  112. 112.

    Lin, J. et al. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014).

    CAS  Google Scholar 

  113. 113.

    El-Kady, M. F. et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl Acad. Sci. USA 112, 4233–4238 (2015).

    CAS  Google Scholar 

  114. 114.

    Ye, L. H. et al. Highly efficient materials assembly via electrophoretic deposition for electrochemical energy conversion and storage devices. Adv. Energy Mater. 6, 1502018 (2016).

    Google Scholar 

  115. 115.

    Ferris, A., Garbarino, S., Guay, D. & Pech, D. 3D RuO2 microsupercapacitors with remarkable areal energy. Adv. Mater. 27, 6625–6629 (2015).

    CAS  Google Scholar 

  116. 116.

    Zhang, Y. Z. et al. Printed supercapacitors: materials, printing and applications. Chem. Soc. Rev. 48, 3229–3264 (2019).

    CAS  Google Scholar 

  117. 117.

    Jost, K., Dion, G. & Gogotsi, Y. Textile energy storage in perspective. J. Mater. Chem. A 2, 10776–10787 (2014).

    CAS  Google Scholar 

  118. 118.

    Garcia-Torres, J., Roberts, A. J., Slade, R. C. T. & Crean, C. One-step wet-spinning process of CB/CNT/MnO2 nanotubes hybrid flexible fibres as electrodes for wearable supercapacitors. Electrochim. Acta 296, 481–490 (2019).

    CAS  Google Scholar 

  119. 119.

    Quain, E. et al. Direct writing of additive-free MXene-in-water ink for electronics and energy storage. Adv. Mater. Technol. 4, 1800256 (2019).

    Google Scholar 

Download references


P.S. acknowledges H. Shao, P. Rozier and C. Merlet for help with the figures, as well as the Agence Nationale de la Recherche (Labex Store-Ex) and Institut Universitaire de France for support. Y.G.’s research on capacitive energy storage was primarily supported through the Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences.

Author information




Both authors contributed equally to the planning and writing of this article.

Corresponding authors

Correspondence to Patrice Simon or Yury Gogotsi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simon, P., Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. (2020).

Download citation


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing