Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Applications and challenges of thermoplasmonics

Abstract

Over the past two decades, there has been a growing interest in the use of plasmonic nanoparticles as sources of heat remotely controlled by light, giving rise to the field of thermoplasmonics. The ability to release heat on the nanoscale has already impacted a broad range of research activities, from biomedicine to imaging and catalysis. Thermoplasmonics is now entering an important phase: some applications have engaged in an industrial stage, while others, originally full of promise, experience some difficulty in reaching their potential. Meanwhile, innovative fundamental areas of research are being developed. In this Review, we scrutinize the current research landscape in thermoplasmonics, with a specific focus on its applications and main challenges in many different fields of science, including nanomedicine, cell biology, photothermal and hot-electron chemistry, solar light harvesting, soft matter and nanofluidics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Thermoplasmonics for photothermal therapy and cell biology.
Fig. 2: Thermoplasmonics for chemistry.
Fig. 3: Thermoplasmonics for solar-light harvesting.
Fig. 4: Thermoplasmonics in liquids.
Fig. 5: Thermoplasmonics in manufacturing.

References

  1. 1.

    Hüttmann, G. & Birngruber, R. On the possibility of high-precision photothermal microeffects and the measurement of fast thermal denaturation of proteins. IEEE J. Sel. Top. Quantum Electron. 5, 954–962 (1999).

    Google Scholar 

  2. 2.

    Boyer, D., Tamarat, P., Maali, A., Lounis, B. & Orrit, M. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297, 1160–1163 (2002).

    CAS  Google Scholar 

  3. 3.

    Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R. & Lin, C. P. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J. 84, 4023–4032 (2003).

    CAS  Google Scholar 

  4. 4.

    Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549–13554 (2003).

    CAS  Google Scholar 

  5. 5.

    Ghosh, P., Han, G., De, M., Kim, C. K. & Rotello, V. M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60, 1307–1315 (2008).

    CAS  Google Scholar 

  6. 6.

    Li, W. & Chen, X. Gold nanoparticles for photoacoustic imaging. Nanomedicine 10, 299–320 (2015).

    CAS  Google Scholar 

  7. 7.

    Baffou, G. & Quidant, R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon. Rev. 7, 171–187 (2013).

    CAS  Google Scholar 

  8. 8.

    Baffou, G. Thermoplasmonics (Cambridge Univ. Press, 2017).

  9. 9.

    Jauffred, L., Samadi, A., Klingberg, H., Bendix, P. M. & Oddershede, L. B. Plasmonic heating of nanostructures. Chem. Rev. 119, 8087–8130 (2019).

    CAS  Google Scholar 

  10. 10.

    Govorov, A. O. & Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007).

    Google Scholar 

  11. 11.

    Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    CAS  Google Scholar 

  12. 12.

    Morales-Dalmau, J., Vilches, C., De Miguel, I., Sanz, V. & Quidant, R. Optimum morphology of gold nanorods for light-induced hyperthermia. Nanoscale 10, 2632–2638 (2018).

    CAS  Google Scholar 

  13. 13.

    Pilot study of AuroLase(tm) therapy in refractory and/or recurrent tumors of the head and neck. ClinicalTrial NCT00848042 ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00848042 (2017).

  14. 14.

    Ali, M. R. K., Ibrahim, I. M., Ali, H. R., Selim, S. A. & El-Sayed, M. A. Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis. Int. J. Nanomed. 11, 4849–4863 (2016).

    CAS  Google Scholar 

  15. 15.

    Feliu, N. et al. In vivo degeneration and the fate of inorganic nanoparticles. Chem. Soc. Rev. 45, 2440–2457 (2016).

    CAS  Google Scholar 

  16. 16.

    Nichols, J. W. & Bae, Y. H. EPR: Evidence and fallacy. J. Control. Release 190, 451–464 (2014).

    CAS  Google Scholar 

  17. 17.

    Poon, W. et al. Elimination pathways of nanoparticles. ACS Nano 13, 5785–5798 (2019).

    CAS  Google Scholar 

  18. 18.

    Morales-Dalmau, J. et al. Quantification of gold nanoparticle accumulation in tissue by two-photon luminescence microscopy. Nanoscale 11, 11331–11339 (2019).

    CAS  Google Scholar 

  19. 19.

    Beik, J. et al. Gold nanoparticles in combinatorial cancer therapy strategies. Coord. Chem. Rev. 387, 299–324 (2019).

    CAS  Google Scholar 

  20. 20.

    Krpetić, Ž. et al. Inflicting controlled nonthermal damage to subcellular structures by laser-activated gold nanoparticles. Nano Lett. 10, 4549–4554 (2010).

    Google Scholar 

  21. 21.

    Vankayala, R., Huang, Y. K., Kalluru, P., Chiang, C. S. & Hwang, K. C. First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infra-red light activation. Small 10, 1612–1622 (2014).

    CAS  Google Scholar 

  22. 22.

    Kharlamov, A. N. et al. Silica-gold nanoparticles for atheroprotective management of plaques: results of the NANOM-FIM trial. Nanoscale 7, 8003–8015 (2015).

    CAS  Google Scholar 

  23. 23.

    Wilson, A. M. et al. In vivo laser-mediated retinal ganglion cell optoporation using KV1.1 conjugated gold nanoparticles. Nano Lett. 18, 6981–6988 (2018).

    CAS  Google Scholar 

  24. 24.

    Harris, T. & Kim, A. Hair removal with coated metal nanoparticles. US patent 14/471,331 (2014).

  25. 25.

    Paithankar, D. Y. et al. Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered gold plasmonic particles. Adv. Mater. TechConnect Briefs 2016 3, 177–179 (2016).

    Google Scholar 

  26. 26.

    Zharov, V. P., Mercer, K. E., Galitovskaya, E. N. & Smeltzer, M. S. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J. 90, 619–627 (2006).

    CAS  Google Scholar 

  27. 27.

    Pihl, M., Bruzell, E. & Andersson, M. Bacterial biofilm elimination using gold nanorod localised surface plasmon resonance generated heat. Mater. Sci. Eng. C 80, 54–58 (2017).

    CAS  Google Scholar 

  28. 28.

    De Miguel, I. et al. Plasmon-based biofilm inhibition on surgical implants. Nano Lett. 19, 2524–2529 (2019).

    Google Scholar 

  29. 29.

    Neumann, O. et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc. Natl Acad. Sci. USA 110, 11677–11681 (2013).

    CAS  Google Scholar 

  30. 30.

    Robert, H. M. L. et al. Photothermal control of heat-shock protein expression at the single cell level. Small 14, 42–47 (2018).

    Google Scholar 

  31. 31.

    Baffou, G., Polleux, J., Rigneault, H. & Monneret, S. Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination. J. Phys. Chem. C 118, 4890–4898 (2014).

    CAS  Google Scholar 

  32. 32.

    Kyrsting, A., Bendix, P. M., Stamou, D. G. & Oddershede, L. B. Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release. Nano Lett. 11, 888–892 (2011).

    CAS  Google Scholar 

  33. 33.

    Hrelescu, C. et al. DNA melting in gold nanostove clusters. J. Phys. Chem. C 114, 7401–7411 (2010).

    CAS  Google Scholar 

  34. 34.

    Fränzl, M. et al. Thermophoretic trap for single amyloid fibril and protein aggregation studies. Nat. Methods 16, 611–614 (2019).

    Google Scholar 

  35. 35.

    Zhu, M., Baffou, G., Meyerbröker, N. & Polleux, J. Micropatterning thermoplasmonic gold nanoarrays to manipulate cell adhesion. ACS Nano 6, 7227–7233 (2012).

    CAS  Google Scholar 

  36. 36.

    Baumgart, J. et al. Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells. Biomaterials 33, 2345–2350 (2012).

    CAS  Google Scholar 

  37. 37.

    Li, M., Lohmüller, T. & Feldmann, J. Optical injection of gold nanoparticles into living cells. Nano Lett. 15, 770–775 (2015).

    CAS  Google Scholar 

  38. 38.

    Bahadori, A., Oddershede, L. B. & Bendix, P. M. Hot-nanoparticle-mediated fusion of selected cells. Nano Res. 10, 2034–2045 (2017).

    CAS  Google Scholar 

  39. 39.

    Boulais, E., Lachaine, R., Hatef, A. & Meunier, M. Plasmonics for pulsed-laser cell nanosurgery: fundamentals and applications. J. Photochem. Photobiol. C 17, 26–49 (2013).

    CAS  Google Scholar 

  40. 40.

    Parakhonskiy, B. V., Parak, W. J., Volodkin, D. & Skirtach, A. G. Hybrids of polymeric capsules, lipids, and nanoparticles: thermodynamics and temperature rise at the nanoscale and emerging applications. Langmuir 35, 8574–8583 (2019).

    CAS  Google Scholar 

  41. 41.

    Ambrosone, A. et al. Control of Wnt/β-catenin signaling pathway in vivo via light responsive capsules. ACS Nano 10, 4828–4834 (2016).

    CAS  Google Scholar 

  42. 42.

    Carregal-Romero, S. et al. NIR-light triggered delivery of macromolecules into the cytosol. J. Control. Release 159, 120–127 (2012).

    CAS  Google Scholar 

  43. 43.

    Giner-Casares, J. J., Henriksen-Lacey, M., García, I. & Liz-Marzán, L. M. Plasmonic surfaces for cell growth and retrieval triggered by near-infrared light. Angew. Chem. Int. Ed. 55, 974–978 (2016).

    CAS  Google Scholar 

  44. 44.

    Baffou, G. & Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev. 43, 3898–3907 (2014).

    CAS  Google Scholar 

  45. 45.

    Shin, H. H., Koo, J. J., Lee, K. S. & Kim, Z. H. Chemical reactions driven by plasmon-induced hot carriers. Appl. Mater. Today 16, 112–119 (2019).

    Google Scholar 

  46. 46.

    Qiu, J. & Wei, W. D. Surface plasmon-mediated photothermal chemistry. J. Phys. Chem. C 118, 20735–20749 (2014).

    CAS  Google Scholar 

  47. 47.

    Cao, L., Barsic, D. N., Guichard, A. R. & Brongersma, M. L. Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett. 7, 3523–3527 (2007).

    CAS  Google Scholar 

  48. 48.

    Baffou, G. & Rigneault, H. Femtosecond-pulsed optical heating of gold nanoparticles. Phys. Rev. B 84, 1–13 (2011).

    Google Scholar 

  49. 49.

    Haruta, M., Kobayashi, T., Sano, H. & Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 16, 405–408 (1987).

    Google Scholar 

  50. 50.

    Boyd, D. A., Greengard, L., Brongersma, M., Ei-Naggar, M. Y. & Goodwin, D. G. Plasmon-assisted chemical vapor deposition. Nano Lett. 6, 2592–2597 (2006).

    CAS  Google Scholar 

  51. 51.

    Chen, X., Zhu, H. Y., Zhao, J. C., Zheng, Z. F. & Gao, X. P. Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. Angew. Chem. Int. Ed. 47, 5353–5356 (2008).

    CAS  Google Scholar 

  52. 52.

    Hung, W. H., Aykol, M., Valley, D., Hou, W. & Cronin, S. B. Plasmon resonant enhancement of carbon monoxide catalysis. Nano Lett. 10, 1314–1318 (2010).

    CAS  Google Scholar 

  53. 53.

    Adleman, J. R., Boyd, D. A., Goodwin, D. G. & Psaltis, D. Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417–4423 (2009).

    CAS  Google Scholar 

  54. 54.

    Fasciani, C., Alejo, C. J. B., Grenier, M., Netto-Ferreira, J. C. & Scaiano, J. C. High-temperature organic reactions at room temperature using plasmon excitation: decomposition of dicumyl peroxide. Org. Lett. 13, 204–207 (2011).

    CAS  Google Scholar 

  55. 55.

    Robert, H. M. L. et al. Light-assisted solvothermal chemistry using plasmonic nanoparticles. ACS Omega 1, 2–8 (2016).

    CAS  Google Scholar 

  56. 56.

    Tian, Y. & Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. 16, 1810–1811 (2004).

    Google Scholar 

  57. 57.

    Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011).

    CAS  Google Scholar 

  58. 58.

    Ingram, D. B. & Linic, S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 133, 5202–5205 (2011).

    CAS  Google Scholar 

  59. 59.

    Dubi, Y., Un, I. W. & Sivan, Y. Thermal effects — an alternative mechanism for plasmon-assisted photocatalysis. Chem. Sci. 11, 5017–5027 (2020).

    CAS  Google Scholar 

  60. 60.

    Baffou, G., Bordacchini, I., Baldi, A. & Quidant, R. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. Light. Sci. Appl. 9, 108 (2020).

    Google Scholar 

  61. 61.

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    CAS  Google Scholar 

  62. 62.

    Dimroth, F. et al. Four-junction wafer-bonded concentrator solar cells. IEEE J. Photovolt. 6, 343–349 (2016).

    Google Scholar 

  63. 63.

    Zhou, Z., Sakr, E., Sun, Y. & Bermel, P. Solar thermophotovoltaics: reshaping the solar spectrum. Nanophotonics 5, 1–21 (2016).

    Google Scholar 

  64. 64.

    Omair, Z. et al. Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering. Proc. Natl Acad. Sci. USA 116, 15356–15361 (2019).

    CAS  Google Scholar 

  65. 65.

    Albrecht, G., Kaiser, S., Giessen, H. & Hentschel, M. Refractory plasmonics without refractory materials. Nano Lett. 17, 6402–6408 (2017).

    CAS  Google Scholar 

  66. 66.

    Chester, D., Bermel, P., Joannopoulos, J. D., Soljacic, M. & Celanovic, I. Design and global optimization of high-efficiency solar thermal systems with tungsten cermets. Opt. Express 19, A245–A257 (2011).

    Google Scholar 

  67. 67.

    Wang, X., Li, H., Yu, X., Shi, X. & Liu, J. High-performance solution-processed plasmonic Ni nanochain-Al2O3 selective solar thermal absorbers. Appl. Phys. Lett. 101, 203109 (2012).

    Google Scholar 

  68. 68.

    Guler, U., Boltasseva, A. & Shalaev, V. M. Refractory plasmonics. Science 344, 263–264 (2014).

    CAS  Google Scholar 

  69. 69.

    Arpin, K. A. et al. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification. Nat. Commun. 4, 2630 (2013).

    Google Scholar 

  70. 70.

    Hao, J. et al. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96, 251104 (2010).

    Google Scholar 

  71. 71.

    Li, W. et al. Plasmonics: refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7921–7921 (2014).

    Google Scholar 

  72. 72.

    Chirumamilla, M. et al. Metamaterial emitter for thermophotovoltaics stable up to 1400 °C. Sci. Rep. 9, 7241 (2019).

    Google Scholar 

  73. 73.

    Laroche, M., Carminati, R. & Greffet, J.-J. Near-field thermophotovoltaic energy conversion. J. Appl. Phys. 100, 063704 (2006).

    Google Scholar 

  74. 74.

    Ilic, O., Jablan, M., Joannopoulos, J. D., Celanovic, I. & Soljačić, M. Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems. Opt. Express 20, A366–A384 (2012).

    CAS  Google Scholar 

  75. 75.

    Guo, Y., Molesky, S., Hu, H., Cortes, C. L. & Jacob, Z. Thermal excitation of plasmons for near-field thermophotovoltaics. Appl. Phys. Lett. 105, 073903 (2014).

    Google Scholar 

  76. 76.

    Messina, R. & Ben-Abdallah, P. Graphene-based photovoltaic cells for near-field thermal energy conversion. Sci. Rep. 3, 1383 (2013).

    Google Scholar 

  77. 77.

    Fiorino, A. et al. Nanogap near-field thermophotovoltaics. Nat. Nanotechnol. 13, 806–811 (2018).

    CAS  Google Scholar 

  78. 78.

    Angayarkanni, S. A. & Philip, J. Review on thermal properties of nanofluids: recent developments. Adv. Colloid Interface Sci. 225, 146–176 (2015).

    CAS  Google Scholar 

  79. 79.

    Liu, X. & Xuan, Y. Full-spectrum volumetric solar thermal conversion: via photonic nanofluids. Nanoscale 9, 14854–14860 (2017).

    CAS  Google Scholar 

  80. 80.

    Ni, G. et al. Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy 17, 290–301 (2015).

    CAS  Google Scholar 

  81. 81.

    Ishii, S., Sugavaneshwar, R. P. & Nagao, T. Titanium nitride nanoparticles as plasmonic solar heat transducers. J. Phys. Chem. C 120, 2343–2348 (2016).

    CAS  Google Scholar 

  82. 82.

    Chen, M., He, Y., Zhu, J. & Kim, D. R. Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes. Energy Convers. Manag. 112, 21–30 (2016).

    CAS  Google Scholar 

  83. 83.

    Rativa, D. & Gómez-Malagón, L. A. Solar radiation absorption of nanofluids containing metallic nanoellipsoids. Sol. Energy 118, 419–425 (2015).

    CAS  Google Scholar 

  84. 84.

    Wang, Z. et al. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 5, eaax076 (2019).

    Google Scholar 

  85. 85.

    Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    CAS  Google Scholar 

  86. 86.

    Al-Karaghouli, A. & Kazmerski, L. L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 24, 343–356 (2013).

    CAS  Google Scholar 

  87. 87.

    Ito, Y. et al. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 27, 4302–4307 (2015).

    CAS  Google Scholar 

  88. 88.

    Liu, Y., Chen, J., Guo, D., Cao, M. & Jiang, L. Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air–water interface. ACS Appl. Mater. Interfaces 7, 13645–13652 (2015).

    CAS  Google Scholar 

  89. 89.

    Zhou, L. et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016).

    Google Scholar 

  90. 90.

    Zhou, L. et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon. 10, 393–398 (2016).

    CAS  Google Scholar 

  91. 91.

    Zhu, M. et al. Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8, 1701028 (2018).

    Google Scholar 

  92. 92.

    Donner, J. S., Baffou, G., McCloskey, D. & Quidant, R. Plasmon-assisted optofluidics. ACS Nano 5, 5457–5462 (2011).

    CAS  Google Scholar 

  93. 93.

    Ndukaife, J. C. et al. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. Nat. Nanotechnol. 11, 53–59 (2016).

    CAS  Google Scholar 

  94. 94.

    Garcia-Guirado, J. et al. Overcoming diffusion-limited biosensing by electrothermoplasmonics. ACS Photon. 5, 3673–3679 (2018).

    CAS  Google Scholar 

  95. 95.

    Mittasch, M. et al. Non-invasive perturbations of intracellular flow reveal physical principles of cell organization. Nat. Cell Biol. 20, 344–351 (2018).

    CAS  Google Scholar 

  96. 96.

    Bregulla, A. P., Würger, A., Günther, K., Mertig, M. & Cichos, F. Thermo-osmotic flow in thin films. Phys. Rev. Lett. 116, 188303 (2016).

    Google Scholar 

  97. 97.

    Würger, A. Thermal non-equilibrium transport in colloids. Rep. Prog. Phys. 73, 126601 (2010).

    Google Scholar 

  98. 98.

    Piazza, R. Thermophoresis: moving particles with thermal gradients. Soft Matter 4, 1740–1744 (2008).

    CAS  Google Scholar 

  99. 99.

    Duhr, S., Arduini, S. & Braun, D. Thermophoresis of DNA determined by microfluidic fluorescence. Eur. Phys. J. E 15, 277–286 (2004).

    CAS  Google Scholar 

  100. 100.

    Maeda, Y. T., Buguin, A. & Libchaber, A. Thermal separation: interplay between the Soret effect and entropic force gradient. Phys. Rev. Lett. 107, 38301 (2011).

    Google Scholar 

  101. 101.

    Thamdrup, L. H., Larsen, N. B. & Kristensen, A. Light-induced local heating for thermophoretic manipulation of DNA in polymer micro- and nanochannels. Nano Lett. 10, 826–832 (2010).

    CAS  Google Scholar 

  102. 102.

    Wienken, C. J., Baaske, P., Rothbauer, U., Braun, D. & Duhr, S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat. Commun. 1, 100 (2010).

    Google Scholar 

  103. 103.

    Jiang, H. R., Wada, H., Yoshinaga, N. & Sano, M. Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient. Phys. Rev. Lett. 102, 100–103 (2009).

    Google Scholar 

  104. 104.

    Braun, M. & Cichos, F. Optically controlled thermophoretic trapping of single nano-objects. ACS Nano 7, 11200–11208 (2013).

    CAS  Google Scholar 

  105. 105.

    Braun, M., Bregulla, A. P., Günther, K., Mertig, M. & Cichos, F. Single molecules trapped by dynamic inhomogeneous temperature fields. Nano Lett. 15, 5499–5505 (2015).

    CAS  Google Scholar 

  106. 106.

    Lin, L. et al. Opto-thermophoretic assembly of colloidal matter. Sci. Adv. 3, e1700458 (2017).

    Google Scholar 

  107. 107.

    Lin, L., Peng, X. & Zheng, Y. Reconfigurable opto-thermoelectric printing of colloidal particles. Chem. Commun. 53, 7357–7360 (2017).

    CAS  Google Scholar 

  108. 108.

    Khadka, U., Holubec, V., Yang, H. & Cichos, F. Active particles bound by information flows. Nat. Commun. 9, 3864 (2018).

    Google Scholar 

  109. 109.

    Metwally, K., Mensah, S. & Baffou, G. Fluence threshold for photothermal bubble generation using plasmonic nanoparticles. J. Phys. Chem. C 119, 28586–28596 (2015).

    CAS  Google Scholar 

  110. 110.

    Lombard, J., Biben, T. & Merabia, S. Threshold for vapor nanobubble generation around plasmonic nanoparticles. J. Phys. Chem. C 121, 15402–15415 (2017).

    CAS  Google Scholar 

  111. 111.

    Xie, Y. & Zhao, C. An optothermally generated surface bubble and its applications. Nanoscale 9, 6622–6631 (2017).

    CAS  Google Scholar 

  112. 112.

    Kim, N., Park, H. & Do, H. Evolution of cavitation bubble in tap water by continuous-wave laser focused on a metallic surface. Langmuir 35, 3308–3318 (2019).

    CAS  Google Scholar 

  113. 113.

    Namura, K., Nakajima, K. & Suzuki, M. Quasi-stokeslet induced by thermoplasmonic Marangoni effect around a water vapor microbubble. Sci. Rep. 7, 45776 (2017).

    CAS  Google Scholar 

  114. 114.

    Chen, J. et al. Thermal optofluidics: principles and applications. Adv. Opt. Mater. 8, 1900829 (2020).

    CAS  Google Scholar 

  115. 115.

    Wang, M. et al. Plasmofluidics: merging light and fluids at the micro-/nanoscale. Small 11, 4423–4444 (2015).

    CAS  Google Scholar 

  116. 116.

    Lin, L. et al. Bubble-pen lithography. Nano Lett. 16, 701–708 (2016).

    CAS  Google Scholar 

  117. 117.

    Zhao, C. et al. Theory and experiment on particle trapping and manipulation via optothermally generated bubbles. Lab Chip 14, 384–391 (2014).

    CAS  Google Scholar 

  118. 118.

    Yamamoto, Y. et al. Macroscopically anisotropic structures produced by light-induced solvothermal assembly of porphyrin dimers. Sci. Rep. 8, 11108 (2018).

    Google Scholar 

  119. 119.

    Li, Y. et al. Photoresistance switching of plasmonic nanopores. Nano Lett. 15, 776–782 (2015).

    CAS  Google Scholar 

  120. 120.

    Namura, K. et al. Direction control of quasi-stokeslet induced by thermoplasmonic heating of a water vapor microbubble. Sci. Rep. 9, 4770 (2019).

    Google Scholar 

  121. 121.

    Zhang, K. et al. Laser-induced thermal bubbles for microfluidic applications. Lab Chip 11, 1389 (2011).

    CAS  Google Scholar 

  122. 122.

    Heber, A., Selmke, M. & Cichos, F. Metal nanoparticle based all-optical photothermal light modulator. ACS Nano 8, 1893–1898 (2014).

    CAS  Google Scholar 

  123. 123.

    Zhao, C., Liu, Y., Zhao, Y., Fang, N. & Huang, T. J. A reconfigurable plasmofluidic lens. Nat. Commun. 4, 2305 (2013).

    Google Scholar 

  124. 124.

    Lombard, J., Biben, T. & Merabia, S. Nanobubbles around plasmonic nanoparticles: thermodynamic analysis. Phys. Rev. E 91, 43007 (2015).

    Google Scholar 

  125. 125.

    Jollans, T. & Orrit, M. Explosive, oscillatory, and Leidenfrost boiling at the nanoscale. Phys. Rev. E 99, 63110 (2019).

    CAS  Google Scholar 

  126. 126.

    Zaytsev, M. E. et al. Plasmonic bubbles in n-alkanes. J. Phys. Chem. C 122, 28375–28381 (2018).

    CAS  Google Scholar 

  127. 127.

    Simonot, A., Cassaignau, A. & Coré-Baillais, M. The State of 3D Printing (Sculpteo, 2015); https://www.sculpteo.com/media/ebook/State_of_3DP_2018.pdf

  128. 128.

    Wagner, T., Höfer, T., Knies, S. & Eyerer, P. Laser sintering of high temperature resistant polymers with carbon black additives. Int. Polym. Process. 19, 395–401 (2004).

    CAS  Google Scholar 

  129. 129.

    Powell, A. W., Stavrinadis, A., De Miguel, I., Konstantatos, G. & Quidant, R. White and brightly colored 3D printing based on resonant photothermal sensitizers. Nano Lett. 18, 6660–6664 (2018).

    CAS  Google Scholar 

  130. 130.

    Lalisse, A., Tessier, G., Plain, J. & Baffou, G. Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. J. Phys. Chem. C 119, 25518–25528 (2015).

    CAS  Google Scholar 

  131. 131.

    Baffou, G., Quidant, R. & Girard, C. Heat generation in plasmonic nanostructures: influence of morphology. Appl. Phys. Lett. 94, 153109 (2009).

    Google Scholar 

  132. 132.

    Wang, X., Santschi, C. & Martin, O. J. F. Strong improvement of long-term chemical and thermal stability of plasmonic silver nanoantennas and films. Small 13, 1700044 (2017).

    Google Scholar 

  133. 133.

    MacKey, M. A., Ali, M. R. K., Austin, L. A., Near, R. D. & El-Sayed, M. A. The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments. J. Phys. Chem. B 118, 1319–1326 (2014).

    CAS  Google Scholar 

  134. 134.

    Park, S. E. et al. Comparative hyperthermia effects of silica-gold nanoshells with different surface coverage of gold clusters on epithelial tumor cells. Int. J. Nanomed. 10, 261–271 (2015).

    CAS  Google Scholar 

  135. 135.

    Chen, J. et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 7, 1318–1322 (2007).

    CAS  Google Scholar 

  136. 136.

    Chatterjee, H., Rahman, D. S., Sengupta, M. & Ghosh, S. K. Gold nanostars in plasmonic photothermal therapy: the role of tip heads in the thermoplasmonic landscape. J. Phys. Chem. C 122, 13082–13094 (2018).

    CAS  Google Scholar 

  137. 137.

    Quintanilla, M. et al. Heat generation by branched Au/Pd nanocrystals: influence of morphology and composition. Nanoscale 11, 19561–19570 (2019).

    CAS  Google Scholar 

  138. 138.

    Baffou, G., Quidant, R. & García De Abajo, F. J. Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709–716 (2010).

    CAS  Google Scholar 

  139. 139.

    Baffou, G. et al. Photoinduced heating of nanoparticle arrays. ACS Nano 7, 6478–6488 (2013).

    CAS  Google Scholar 

  140. 140.

    Richardson, H. H., Carlson, M. T., Tandler, P. J., Hernandez, P. & Govorov, A. O. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett. 9, 1139–1146 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the European Research Council programme under grants ERC-CoG QnanoMECA (64790) and ERC-CoG HiPhore (772725), Fundació Privada Cellex, the CERCA programme, the Spanish Ministry of Economy and Competitiveness, through the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (SEV-2015-0522), the Deutsche Forschungsgemeinschaft (DFG, project numbers 237143019, 336492136, 203317744), the ESF and the Free State of Saxony (Junior Research Group UniDyn, project number SAB 100382164).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Guillaume Baffou or Frank Cichos or Romain Quidant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baffou, G., Cichos, F. & Quidant, R. Applications and challenges of thermoplasmonics. Nat. Mater. 19, 946–958 (2020). https://doi.org/10.1038/s41563-020-0740-6

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing