Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Configurable phonon polaritons in twisted α-MoO3

An Author Correction to this article was published on 28 July 2020

This article has been updated


Moiré engineering is being intensively investigated as a method to tune the electronic, magnetic and optical properties of twisted van der Waals materials. Advances in moiré engineering stem from the formation of peculiar moiré superlattices at small, specific twist angles. Here we report configurable nanoscale light–matter waves—phonon polaritons—by twisting stacked α-phase molybdenum trioxide (α-MoO3) slabs over a broad range of twist angles from 0° to 90°. Our combined experimental and theoretical results reveal a variety of polariton wavefront geometries and topological transitions as a function of the twist angle. In contrast to the origin of the modified electronic band structure in moiré superlattices, the polariton twisting configuration is attributed to the electromagnetic interaction of highly anisotropic hyperbolic polaritons in stacked α-MoO3 slabs. These results indicate twisted α-MoO3 to be a promising platform for nanophotonic devices with tunable functionalities.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Real-space infrared nanoimages reveal the twisting tunability for phonon polaritons.
Fig. 2: FEM real-space simulation and electromagnetic theory of momentum-space (k-space) isofrequency dispersion of phonon polaritons in twisted α-MoO3.
Fig. 3: Electromagnetic interaction as the origin of twisting tunability for phonon polaritons.

Data availability

All other data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The custom code employed in this work to perform all calculations is available from the corresponding author upon reasonable request.

Change history

  • 28 July 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS  Google Scholar 

  2. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    CAS  Google Scholar 

  3. Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    CAS  Google Scholar 

  4. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    CAS  Google Scholar 

  5. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    CAS  Google Scholar 

  6. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  Google Scholar 

  7. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    CAS  Google Scholar 

  8. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    CAS  Google Scholar 

  9. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    CAS  Google Scholar 

  10. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    CAS  Google Scholar 

  11. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    CAS  Google Scholar 

  12. Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Google Scholar 

  13. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2016).

    Google Scholar 

  14. Ni, G. X. et al. Plasmons in graphene moiré superlattices. Nat. Mater. 14, 1217–1222 (2015).

    CAS  Google Scholar 

  15. Sunku, S. S. et al. Photonic crystals for nano-light in moire graphene superlattices. Science 362, 1153–1156 (2018).

    CAS  Google Scholar 

  16. Jiang, L. et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls. Nat. Mater. 15, 840–844 (2016).

    CAS  Google Scholar 

  17. Hu, F. et al. Real-space imaging of the tailored plasmons in twisted bilayer graphene. Phys. Rev. Lett. 119, 247402 (2017).

    CAS  Google Scholar 

  18. Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    CAS  Google Scholar 

  19. Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).

    CAS  Google Scholar 

  20. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    CAS  Google Scholar 

  21. Atkin, J. M., Berweger, S., Jones, A. C. & Raschke, M. B. Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids. Adv. Phys. 61, 745–842 (2012).

    CAS  Google Scholar 

  22. Dai, S. et al. Efficiency of launching highly confined polaritons by infrared light incident on a hyperbolic material. Nano Lett. 17, 5285–5290 (2017).

    CAS  Google Scholar 

  23. Alonso-González, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).

    Google Scholar 

  24. Hu, G., Shen, J., Qiu, C.-W., Alù, A. & Dai, S. Phonon polaritons and hyperbolic response in van der Waals materials. Adv. Opt. Mater. 8, 1901393 (2020).

    CAS  Google Scholar 

  25. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    CAS  Google Scholar 

  26. Gomez-Diaz, J. S., Tymchenko, M. & Alù, A. Hyperbolic plasmons and topological transitions over uniaxial metasurfaces. Phys. Rev. Lett. 114, 233901 (2015).

    Google Scholar 

  27. Krishnamoorthy, H. N., Jacob, Z., Narimanov, E., Kretzschmar, I. & Menon, V. M. Topological transitions in metamaterials. Science 336, 205–209 (2012).

    CAS  Google Scholar 

  28. Álvarez-Pérez, G. et al. Infrared permittivity of the biaxial van der Waals semiconductor α-MoO3 from near- and far-field correlative studies. Adv. Mater. (2020).

  29. Renuka, M. et al. Dispersion engineering of hyperbolic plasmons in bilayer 2D materials. Opt. Lett. 43, 5737–5740 (2018).

    CAS  Google Scholar 

  30. Nemilentsau, A., Low, T. & Hanson, G. Anisotropic 2D materials for tunable hyperbolic plasmonics. Phys. Rev. Lett. 116, 066804 (2016).

    Google Scholar 

  31. Hu, G., Krasnok, A., Mazor, Y., Qiu, C.-W. & Alù, A. Moiré hyperbolic metasurfaces. Nano Lett. 20, 3217–3224 (2020).

    CAS  Google Scholar 

  32. Chaudhary, K. et al. Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy. Sci. Adv. 5, eaau7171 (2019).

    CAS  Google Scholar 

  33. Fali, A. et al. Refractive index-based control of hyperbolic phonon-polariton propagation. Nano Lett. 19, 7725–7734 (2019).

    CAS  Google Scholar 

  34. Brar, V. W. et al. Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. Nano Lett. 14, 3876–3880 (2014).

    CAS  Google Scholar 

  35. Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10, 682–686 (2015).

    CAS  Google Scholar 

  36. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    CAS  Google Scholar 

  37. Caldwell, J. D. et al. Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics. Nat. Nanotechnol. 11, 9–15 (2016).

    CAS  Google Scholar 

  38. Jacob, Z. et al. Engineering photonic density of states using metamaterials. Appl. Phys. B 100, 215–218 (2010).

    CAS  Google Scholar 

  39. Galfsky, T., Gu, J., Narimanov, E. E. & Menon, V. M. Photonic hypercrystals for control of light-matter interactions. Proc. Natl Acad. Sci. USA 114, 5125–5129 (2017).

    CAS  Google Scholar 

  40. Guo, Y., Cortes, C. L., Molesky, S. & Jacob, Z. Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett. 101, 131106 (2012).

    Google Scholar 

  41. Hoang, T. B., Akselrod, G. M. & Mikkelsen, M. H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett. 16, 270–275 (2016).

    CAS  Google Scholar 

  42. Bogdanov, S. I. et al. Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas. Nano Lett. 18, 4837–4844 (2018).

    CAS  Google Scholar 

  43. Rivera, N., Kaminer, I., Zhen, B., Joannopoulos, J. D. & Soljacic, M. Shrinking light to allow forbidden transitions on the atomic scale. Science 353, 263–269 (2016).

    CAS  Google Scholar 

  44. Newman, W. D. et al. Observation of long-range dipole–dipole interactions in hyperbolic metamaterials. Sci. Adv. 4, eaar5278 (2018).

    CAS  Google Scholar 

  45. Duan, J. et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Lett. (2020).

  46. Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    CAS  Google Scholar 

  47. Zheng, Z. et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Lett. (2020).

Download references


We acknowledge helpful discussions with X. Jiang, J. Lin and T. Low. Work at Auburn University was supported by the Auburn University Intramural Grants Program and National Science Foundation under grant no. DMR-2005194. Work in P.J.-H.’s group was supported through AFOSR grant FA9550-16-1-0382 (fabrication), and the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant GBMF4541 to P.J.-H. This work made use of the Materials Research Science and Engineering Center Shared Experimental Facilities supported by the National Science Foundation (NSF) (grant number DMR-0819762). The work at Zhejiang University was sponsored by the National Natural Science Foundation of China (NNSFC) under grant numbers 61625502, 11961141010 and 61975176, the Top-Notch Young Talents Program of China, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations



M.C. and X.L. contributed equally to this work. S.D. conceived the idea and designed the experiments. M.C. performed the optical experiments. T.D., Z.Z. and Q.M. prepared the samples. X.L. and H.C. developed the theory. M.C. and J.S. performed the simulation. M.C. and S.D. analysed the data. M.C., S.D. and X.L. wrote the manuscript, with input and comments from all authors. S.D., H.C. and P.J.-H. supervised the project.

Corresponding author

Correspondence to Siyuan Dai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10.

Supplementary Video 1

k-space isofrequency curve of twisted α-MoO3 in the range 0°–180°.

Source data

Source Data Fig. 1

Numerical data used to generate Fig. 3g.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Lin, X., Dinh, T.H. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307–1311 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing