Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Distinct handedness of spin wave across the compensation temperatures of ferrimagnets

A Publisher Correction to this article was published on 02 September 2020

This article has been updated

Abstract

Antiferromagnetic spin waves have been predicted to offer substantial functionalities for magnonic applications due to the existence of two distinct polarizations, the right-handed and left-handed modes, as well as their ultrafast dynamics. However, experimental investigations have been hampered by the field-immunity of antiferromagnets. Ferrimagnets have been shown to be an alternative platform to study antiferromagnetic spin dynamics. Here we investigate thermally excited spin waves in ferrimagnets across the magnetization compensation and angular momentum compensation temperatures using Brillouin light scattering. Our results show that right-handed and left-handed modes intersect at the angular momentum compensation temperature where pure antiferromagnetic spin waves are expected. A field-induced shift of the mode-crossing point from the angular momentum compensation temperature and the gyromagnetic reversal reveal hitherto unrecognized properties of ferrimagnetic dynamics. We also provide a theoretical understanding of our experimental results. Our work demonstrates important aspects of the physics of ferrimagnetic spin waves and opens up the attractive possibility of ferrimagnet-based magnonic devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the measurement set-up and device structure.
Fig. 2: Spin-wave characteristics across TM.
Fig. 3: Spin-wave characteristics across TA.
Fig. 4: Frequency difference of the Stokes and anti-Stokes modes across TA.
Fig. 5: Shift of mode-crossing temperature by the magnetic field.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Change history

  • 02 September 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Stancil, D. D. & Prabhakar, A. Spin Waves (Springer, 2009).

  2. Khitun, A. Multi-frequency magnonic logic circuits for parallel data processing. J. Appl. Phys. 111, 054307 (2012).

  3. Kostylev, M. P., Serga, A. A., Schneider, T., Leven, B. & Hillebrands, B. Spin-wave logical gates. Appl. Phys. Lett. 87, 153501 (2005).

    Article  Google Scholar 

  4. Schneider, T. et al. Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008).

    Article  Google Scholar 

  5. Lee, K. S. & Kim, S. K. Conceptual design of spin wave logic gates based on a Mach-Zehnder-type spin wave interferometer for universal logic functions. J. Appl. Phys. 104, 053909 (2008).

    Article  Google Scholar 

  6. Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nat. Commun. 5, 4700 (2014).

    Article  CAS  Google Scholar 

  7. Demokritov, S. O. & Slavin, A. N. Magnonics 125 (Springer, 2013).

  8. Karenowska, A. D., Chumak, A. V., Serga, A. A. & Hillebrands, B. in Handbook of Spintronics (eds Xu, Y. et al.) 1505–1549 (Springer, 2015).

  9. Yu, J. et al. Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nat. Commun. 4, 2719 (2013).

    Article  Google Scholar 

  10. Vogt, K. et al. Realization of a spin-wave multiplexer. Nat. Commun. 5, 3727 (2014).

    Article  CAS  Google Scholar 

  11. Urazhdin, S. et al. Nanomagnonic devices based on the spin-transfer torque. Nat. Nanotechnol. 9, 509–513 (2014).

    Article  CAS  Google Scholar 

  12. Wagner, K. et al. Magnetic domain walls as reconfigurable spin-wave nanochannels. Nat. Nanotechnol. 11, 432–436 (2016).

    Article  CAS  Google Scholar 

  13. Stigloher, J. et al. Snell’s law for spin waves. Phys. Rev. Lett. 117, 037204 (2016).

    Article  CAS  Google Scholar 

  14. Song, M., Moon, K.-W., Hwang, C. & Kim, K.-J. Omnidirectional spin-wave array antenna. Phys. Rev. Appl. 11, 024027 (2019).

    Article  CAS  Google Scholar 

  15. Doornenbal, R. J., Roldán-Molina, A., Nunez, A. S. & Duine, R. A. Spin-wave amplification and lasing driven by inhomogeneous spin-transfer torques. Phys. Rev. Lett. 122, 37203 (2019).

    Article  CAS  Google Scholar 

  16. Gomonay, O., Baltz, V., Brataas, A. & Tserkovnyak, Y. Antiferromagnetic spin textures and dynamics. Nat. Phys. 14, 213–216 (2018).

    Article  CAS  Google Scholar 

  17. Liu, C. et al. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 14, 662–667 (2019).

    Article  CAS  Google Scholar 

  18. Keffer, F. & Kittel, C. Theory of antiferromagnetic resonance. Phys. Rev. 85, 329–337 (1952).

    Article  CAS  Google Scholar 

  19. Keffer, F., Kaplan, H. & Yafet, Y. Spin waves in ferromagnetic and antiferromagnetic materials. Am. J. Phys. 21, 250–257 (1953).

    Article  Google Scholar 

  20. Kim, K. J. et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat. Mater. 16, 1187–1192 (2017).

    Article  CAS  Google Scholar 

  21. Siddiqui, S. A., Han, J., Finley, J. T., Ross, C. A. & Liu, L. Current-induced domain wall motion in a compensated ferrimagnet. Phys. Rev. Lett. 121, 57701 (2018).

    Article  CAS  Google Scholar 

  22. Caretta, L. et al. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet. Nat. Nanotechnol. 13, 1154–1160 (2018).

    Article  CAS  Google Scholar 

  23. Hirata, Y. et al. Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet. Nat. Nanotechnol. 14, 232–236 (2019).

    Article  CAS  Google Scholar 

  24. Okuno, T. et al. Spin-transfer torques for domain wall motion in antiferromagnetically coupled ferrimagnets. Nat. Electron. 2, 389–393 (2019).

    Article  CAS  Google Scholar 

  25. Kim, D. H. et al. Low magnetic damping of ferrimagnetic GdFeCo alloys. Phys. Rev. Lett. 122, 127203 (2019).

    Article  CAS  Google Scholar 

  26. Imai, M. et al. Observation of gyromagnetic reversal. Appl. Phys. Lett. 113, 052402 (2018).

    Article  Google Scholar 

  27. Imai, M. et al. Angular momentum compensation manipulation to room temperature of the ferrimagnet Ho3–xDyxFe5O12 detected by the Barnett effect. Appl. Phys. Lett. 114, 162402 (2019).

    Article  Google Scholar 

  28. Binder, M. et al. Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum. Phys. Rev. B 74, 134404 (2006).

    Article  Google Scholar 

  29. Stanciu, C. D. et al. Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: the role of angular momentum compensation. Phys. Rev. B 73, 220402 (2006).

    Article  Google Scholar 

  30. Liensberger, L. et al. Exchange-enhanced ultrastrong magnon-magnon coupling in a compensated ferrimagnet. Phys. Rev. Lett. 123, 117204 (2019).

    Article  CAS  Google Scholar 

  31. Moon, J. H. et al. Spin-wave propagation in the presence of interfacial Dzyaloshinskii-Moriya interaction. Phys. Rev. B 88, 184404 (2013).

    Article  Google Scholar 

  32. Kostylev, M. Interface boundary conditions for dynamic magnetization and spin wave dynamics in a ferromagnetic layer with the interface Dzyaloshinskii-Moriya interaction. J. Appl. Phys. 115, 233902 (2014).

    Article  Google Scholar 

  33. Kim, D. H. et al. Bulk Dzyaloshinskii–Moriya interaction in amorphous ferrimagnetic alloys. Nat. Mater. 18, 685–690 (2019).

    Article  CAS  Google Scholar 

  34. Tono, T. et al. Chiral magnetic domain wall in ferrimagnetic GdFeCo wires. Appl. Phys. Express 8, 073001 (2015).

    Article  Google Scholar 

  35. Kim, S. K., Lee, K. J. & Tserkovnyak, Y. Self-focusing skyrmion racetracks in ferrimagnets. Phys. Rev. B 95, 140404 (2017).

    Article  Google Scholar 

  36. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  CAS  Google Scholar 

  37. Oh, S.-H. et al. Coherent terahertz spin-wave emission associated with ferrimagnetic domain wall dynamics. Phys. Rev. B 96, 100407 (2017).

    Article  Google Scholar 

  38. Wiedwald, U., Spasova, M., Farle, M., Hilgendorff, M. & Giersig, M. Ferromagnetic resonance of monodisperse Co particles. J. Vac. Sci. Technol. A 19, 1773–1776 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Kim at the KAIST Analysis Center for Research Advancement (KARA) for his support with the high-temperature Hall measurement and T. Eom and A. Lee at the Korea Basic Science Institute (KBSI) for their support on the magnetic properties measurement system measurement. This work was supported by the Future Materials Discovery Program through the National Research Foundation of Korea (nos 2015M3D1A1070467, 2019M3F3A1A02072476 and 2020R1A2C4001789) and a National Research Council of Science & Technology (NST) grant (no. CAP-16-01-KIST) from the Korean government (MSIP). K.-J.K. was supported by the KAIST-funded Global Singularity Research Program for 2020. K.-J.L. acknowledges support from the Samsung Research Funding Center of Samsung Electronics under project no. SRFCMA1702-02. S.K.K. was supported by a Young Investigator Grant (YIG) from the Korean-American Scientists and Engineers Association (KSEA) and Research Council Grant URC-19-090 of the University of Missouri.

Author information

Authors and Affiliations

Authors

Contributions

C.K., K.-J.K. and C.H. planned the study. C.K. performed the BLS experiment. S.L. grew and optimized the Gd100–xCox samples. S.L., H.-G.K, J.-H.P., J.P., J.Y. and B.-G.P. performed the film characterization. C.K., K.-W.M., S.K.K., K.–J.K. and C.H. analysed the results. K.-J.L. and S.K.K. provided the spin-wave dispersion theory. C.K., S.K.K., K.-J.K. and C.H. wrote the paper. All authors were involved in the discussion of the results and commented on the manuscript.

Corresponding authors

Correspondence to Se Kwon Kim, Kab-Jin Kim or Chanyong Hwang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8 and Figs. 1–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Lee, S., Kim, HG. et al. Distinct handedness of spin wave across the compensation temperatures of ferrimagnets. Nat. Mater. 19, 980–985 (2020). https://doi.org/10.1038/s41563-020-0722-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0722-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing