Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers

Abstract

Interfacial ‘dead’ layers between metals and ferroelectric thin films generally induce detrimental effects in nanocapacitors, yet their peculiar properties can prove advantageous in other electronic devices. Here, we show that dead layers with low Li concentration located at the surface of LiNbO3 ferroelectric materials can function as unipolar selectors. LiNbO3 mesa cells were etched from a single-crystal LiNbO3 substrate, and Pt metal contacts were deposited on their sides. Poling induced non-volatile switching of ferroelectric domains in the cell, and volatile switching in the domains in the interfacial (dead) layers, with the domain walls created within the substrate being electrically conductive. These features were also confirmed using single-crystal LiNbO3 thin films bonded to SiO2/Si wafers. The fabricated nanoscale mesa-structured memory cell with an embedded interfacial-layer selector shows a high on-to-off ratio (>106) and high switching endurance (~1010 cycles), showing potential for the fabrication of crossbar arrays of ferroelectric domain wall memories.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Wall currents and coercive voltages.
Fig. 2: Surface-layer-limited wall currents.
Fig. 3: Wall creation/erasure under write and read operations.
Fig. 4: Domain structure within interfacial layers.
Fig. 5: Reliability testing in 300-nm-thick LNO film in LOI structure.

Data availability

The data sets generated and analysed during this study are available from the corresponding authors on reasonable request. Source data for Figs. 1–5 and for the figures and tables in the Supplementary Information are provided with the paper.

References

  1. 1.

    Shimojo, Y. et al. High-density and high-speed 128Mb chain FeRAM™ with SDRAM-compatible DDR2 interface. In Symposium on VLSI Technical Digest 218–219 (Japan Society of Applied Physics, 2009).

  2. 2.

    Kohlstedt, H. et al. Current status and challenges of ferroelectric memory devices. Microelectron. Eng. 80, 296–304 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    Sharma, P. et al. Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, e1700512 (2017).

    Article  CAS  Google Scholar 

  4. 4.

    Jiang, J. et al. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. Nat. Mater. 17, 49–55 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    Farokhipoor, S. & Noheda, B. Conduction through 71° domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Crassous, A., Sluka, T., Tagantsev, A. K. & Setter, N. Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. Nat. Nanotechnol. 10, 614–618 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Wu, W., Horibe, Y., Lee, N., Cheong, S.-W. & Guest, J. R. Conduction of topologically protected charged ferroelectric domain walls. Phys. Rev. Lett. 108, 077203 (2012).

    Article  CAS  Google Scholar 

  9. 9.

    Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284–288 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Schröder, M. et al. Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 22, 3936–3944 (2012).

    Article  CAS  Google Scholar 

  11. 11.

    Godau, C., Kämpfe, T., Thiessen, A., Eng, L. M. & Haußmann, A. Enhancing the domain wall conductivity in lithium niobate single crystals. ACS Nano 11, 4816–4824 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Werner, C. S. et al. Large and accessible conductivity of charged domain walls in lithium niobate. Sci. Rep. 7, 9862 (2017).

    Article  Google Scholar 

  13. 13.

    Sluka, T., Tagantsev, A. K., Bednyakov, P. & Setter, N. Free-electron gas at charged domain walls in insulating BaTiO3. Nat. Commun. 4, 1808 (2013).

    Article  CAS  Google Scholar 

  14. 14.

    Volk, T. R., Gainutdinov, R. V. & Zhang, H. H. Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films. Appl. Phys. Lett. 110, 132905 (2017).

    Article  CAS  Google Scholar 

  15. 15.

    Ma, J. et al. Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls. Nat. Nanotechnol. 13, 947–952 (2018).

    Article  CAS  Google Scholar 

  16. 16.

    Bai, Z. L. et al. Hierarchical domain structure and extremely large wall current in epitaxial BiFeO3 thin films. Adv. Funct. Mater. 28, 1801725 (2018).

    Article  CAS  Google Scholar 

  17. 17.

    Stolichnov, I. et al. Persistent conductive footprints of 109° domain walls in bismuth ferrite films. Appl. Phys. Lett. 104, 132902 (2014).

    Article  CAS  Google Scholar 

  18. 18.

    Rojac, T. et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nat. Mater. 16, 322–327 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Linn, E., Rosezin, R., Kügele, C. & Waser, R. Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403–406 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    Yoon, K. J. et al. Double-layer-stacked one diode-one resistive switching memory crossbar array with an extremely high rectification ratio of 109. Adv. Electron. Mater. 3, 1700152 (2017).

    Article  CAS  Google Scholar 

  21. 21.

    Wang, G. et al. High-performance and low-power rewritable SiOx 1 kbit one diode-one resistor crossbar memory array. Adv. Mater. 25, 4789–4793 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Sinnamon, L. J., Bowman, R. M. & Gregg, J. M. Investigation of dead-layer thickness in SrRuO3/Ba0.5Sr0.5TiO3/Au thin-film capacitors. Appl. Phys. Lett. 78, 1724–1726 (2001).

    CAS  Article  Google Scholar 

  23. 23.

    Stengel, M. & Spaldin, N. A. Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679–682 (2006).

    CAS  Article  Google Scholar 

  24. 24.

    Lu, H. et al. Electrical tunability of domain wall conductivity in LiNbO3 thin films. Adv. Mater. 48, 1902890 (2019).

    Article  CAS  Google Scholar 

  25. 25.

    Zhang, Y. & Jiang, A. Q. Low-frequency charge trapping and bistable domain switching in Mg-doped LiNbO3 single crystal films. J. Appl. Phys. 124, 124103 (2018).

    Article  CAS  Google Scholar 

  26. 26.

    Jiang, J., Meng, X. J., Geng, D. Q. & Jiang, A. Q. Accelerated domain switching speed in single-crystal LiNbO3 thin films. J. Appl. Phys. 117, 104101 (2015).

    Article  CAS  Google Scholar 

  27. 27.

    Domingo, N., Narvaez, J., Alexe, M. & Catalan, G. Local properties of the surface layer(s) of BiFeO3 single crystals. J. Appl. Phys. 113, 187220 (2013).

    Article  CAS  Google Scholar 

  28. 28.

    Ravikumar, V., Wolf, D. & Dravid, V. P. Ferroelectric-monolayer reconstruction of the SrTiO3 (100) surface. Phys. Rev. Lett. 74, 960–963 (1995).

    CAS  Article  Google Scholar 

  29. 29.

    Martí, X. et al. Skin layer of BiFeO3 single crystals. Phys. Rev. Lett. 106, 236101 (2011).

    Article  CAS  Google Scholar 

  30. 30.

    Sanna, S. & Schmidt, W. G. Lithium niobate X-cut, Y-cut, and Z-cut surfaces from ab initio theory. Phys. Rev. B 81, 214116 (2010).

    Article  CAS  Google Scholar 

  31. 31.

    Gonnissen, J. et al. Direct observation of ferroelectric domain walls in LiNbO3: wall-meanders, kinks, and local electric charges. Adv. Funct. Mater. 26, 7599–7604 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    den Dekker, A. J., Gonnissen, J., De Backer, A., Sijbers, J. & Van Aert, S. Estimation of unknown structure parameters from high-resolution (S)TEM images: what are the limits? Ultramicroscopy 134, 34–43 (2013).

    Article  CAS  Google Scholar 

  33. 33.

    So, Y. W., Kim, D. J., Noh, T. W., Yoon, J. –G. & Song, T. K. Polarization switching kinetics of epitaxial Pb(Zr0.4Ti0.6)O3 thin films. Appl. Phys. Lett. 86, 092905 (2005).

    Article  CAS  Google Scholar 

  34. 34.

    Merz, W. J. Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys. Rev. 95, 690–698 (1954).

    CAS  Article  Google Scholar 

  35. 35.

    Tybell, T., Paruch, P., Giamarchi, T. & Triscone, J.-M. Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys. Rev. Lett. 89, 097601 (2002).

    CAS  Article  Google Scholar 

  36. 36.

    Mankowsky, R., Hoegen, A. V., Först, M. & Cavalleri, A. Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 118, 197601 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Jesse, S. et al. Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. Nat. Mater. 7, 209–215 (2008).

    CAS  Article  Google Scholar 

  38. 38.

    Gruverman, A., Rodriguez, B. J., Kingon, A. I. & Nemanich, R. J. Spatial inhomogeneity of imprint and switching behavior in ferroelectric capacitors. Appl. Phys. Lett. 82, 3071–3073 (2003).

    CAS  Article  Google Scholar 

  39. 39.

    Anbusathaiah, V. & Nagarajan, V. High-resolution piezoresponse force microscopy investigation of imprint in ferroelectric thin films. Appl. Phys. Lett. 89, 132912 (2006).

    Article  CAS  Google Scholar 

  40. 40.

    Kalinin, S. V., Kim, Y., Fong, D. D. & Morozovska, A. N. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures. Rep. Prog. Phys. 81, 036502 (2018).

    Article  CAS  Google Scholar 

  41. 41.

    Setvin, M. et al. Polarity compensation mechanisms on the perovskite surface KTaO3(001). Science 359, 572–575 (2018).

    CAS  Article  Google Scholar 

  42. 42.

    Han, H., Cai, L., Xiang, B., Jiang, Y. & Hu, H. Lithium-rich vapor transport equilibration in single-crystal lithium niobate thin film at low temperature. Opt. Mater. Express 5, 2634–2641 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    Micheloni, R., Crippa, L., Zambelli, C. & Olivo, P. Architectural and integration options for 3D NAND flash memories. Computers 6, 27 (2017).

    Article  Google Scholar 

  44. 44.

    Jiang, A. Q. & Zhang, Y. Next-generation ferroelectric domain-wall memories: principle and architecture. NPG Asia Mater. 11, 2 (2019).

    Article  Google Scholar 

  45. 45.

    Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).

    CAS  Article  Google Scholar 

  46. 46.

    Salje, E. K. H. Ferroelastic materials. Annu. Rev. Mater. Res. 42, 265–283 (2012).

    CAS  Article  Google Scholar 

  47. 47.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Article  Google Scholar 

  48. 48.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    CAS  Article  Google Scholar 

  49. 49.

    Kresse, G. & Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Research Project of Shanghai Science and Technology Innovation Action (grant number 17JC1400300), the National Key R&D Programme of China (number 2019YFA0308500), the National Natural Science Foundation of China (grant numbers 61674044 and 11572040), the Programme of Shanghai Subject Chief Scientist (grant number 17XD1400800) and the Beijing Natural Science Foundation (grant number Z190011). J.F.S. acknowledges the financial support of the Strategic Priority Research Programme of the Chinese Academy of Sciences (grant number XDB07030200). C.S.H. acknowledges the support by Samsung Research Funding & Incubation Center of Samsung Electronics under project number SRFC-TA1703-02. Theoretical calculations were performed using resources of the National Supercomputer Centre in Guangzhou. We thank D. MacDonald from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript. This work is dedicated to the memory of J.F.S., who passed away on 6 April 2020.

Author information

Affiliations

Authors

Contributions

A.Q.J. conceived the idea for the work and performed electrical characterization, and, along with D.W.Z., J.F.S. and C.S.H., directed the study, analysed the results and wrote the manuscript. W.P.G., J.J., C.W., J.W.L. and Y.Z. carried out the nanodevice fabrication and measured the X-ray diffraction patterns, P.L. and J.-w.H. performed the first-principles calculations, and X.J.C. and R.H. performed the TEM observations. All the authors discussed the results.

Corresponding authors

Correspondence to An Quan Jiang or Cheol Seong Hwang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Notes A–L and Table 1.

Supplementary Data

Source data for figures and tables in Supplementary Information.

Source data

Source Data Fig. 1

Experimental data points of Fig. 1c, f–i.

Source Data Fig. 2

Experimental data points of Fig. 2b,d.

Source Data Fig. 3

Experimental data points of Fig. 3a,b.

Source Data Fig. 4

Experimental data points of Fig. 4c,f.

Source Data Fig. 5

Experimental data points of Fig. 5a–i.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, A.Q., Geng, W.P., Lv, P. et al. Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers. Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-0702-z

Download citation