Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photoflexoelectric effect in halide perovskites


Harvesting environmental energy to generate electricity is a key scientific and technological endeavour of our time. Photovoltaic conversion and electromechanical transduction are two common energy-harvesting mechanisms based on, respectively, semiconducting junctions and piezoelectric insulators. However, the different material families on which these transduction phenomena are based complicate their integration into single devices. Here we demonstrate that halide perovskites, a family of highly efficient photovoltaic materials1,2,3, display a photoflexoelectric effect whereby, under a combination of illumination and oscillation driven by a piezoelectric actuator, they generate orders of magnitude higher flexoelectricity than in the dark. We also show that photoflexoelectricity is not exclusive to halides but a general property of semiconductors that potentially enables simultaneous electromechanical and photovoltaic transduction and harvesting in unison from multiple energy inputs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Flexoelectricity of perovskites in the dark.
Fig. 2: Photoflexoelectric experiment.
Fig. 3: Room temperature response.
Fig. 4: Flexoelectricity and photoflexoelectricity of halides and comparison with other materials.

Data availability

The data represented in Figs. 1, 2c,d, 3 and 4 are provided with the paper as source data. Other datasets generated and/or analysed during the current study are available from L.S. on reasonable request.


  1. 1.

    Kojima, A. et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017).

    Article  Google Scholar 

  4. 4.

    Kogan, S. M. Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State 5, 2069–2070 (1964).

    Google Scholar 

  5. 5.

    Bursian, E. & Zaikovskii, O. I. Changes in curvature of ferroelectric film due to polarization. Sov. Phys. Solid State 10, 1121–1124 (1968).

    Google Scholar 

  6. 6.

    Tagantsev, A. K. Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 34, 5883–5889 (1986).

    CAS  Article  Google Scholar 

  7. 7.

    Zubko, P., Catalan, G. & Tagantsev, A. K. Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Majdoub, M. S., Sharma, P. & Cagin, T. Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008).

    Article  Google Scholar 

  9. 9.

    Lee, D. et al. Giant flexoelectric effect in ferroelectric epitaxial thin films. Phys. Rev. Lett. 107, 057602 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Bhaskar, U. K. et al. A flexoelectric microelectromechanical system on silicon. Nat. Nanotechnol. 11, 263–266 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Narvaez, J., Vasquez-Sancho, F. & Catalan, G. Enhanced flexoelectric-like response in oxide semiconductors. Nature 538, 219–221 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Yang, M.-M., Kim, D. J. & Alexe, M. Flexo-photovoltaic effect. Science 360, 904–907 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Nie, W. et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 7, 11574 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Rakita, Y. et al. Tetragonal CH3NH3PbI3 is ferroelectric. Proc. Natl Acad. Sci. USA 114, E5504–E5512 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Liu, Y. et al. Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv. Mater. 27, 5176–5183 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Zhu, W., Fu, J. Y., Li, N. & Cross, L. Piezoelectric composite based on the enhanced flexoelectric effects. Appl. Phys. Lett. 89, 192904 (2006).

    Article  Google Scholar 

  18. 18.

    Stengel, M. Surface control of flexoelectricity. Phys. Rev. B 90, 201112 (2014).

    Article  Google Scholar 

  19. 19.

    Biancoli, A., Fancher, C. M., Jones, J. L. & Damjanovic, D. Breaking of macroscopic centric symmetry in paraelectric phases of ferroelectric materials and implications for flexoelectricity. Nat. Mater. 14, 224–229 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Abdollahi, A., Vásquez-Sancho, F. & Catalan, G. Piezoelectric mimicry of flexoelectricity. Phys. Rev. Lett. 121, 205502 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Wen, X. et al. Flexoelectret: an electret with a tunable flexoelectriclike response. Phys. Rev. Lett. 122, 148001 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    Vales-Castro, P. et al. Flexoelectricity in antiferroelectrics. Appl. Phys. Lett. 113, 132903 (2018).

    Article  Google Scholar 

  23. 23.

    Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Xing, J. et al. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Phys. Chem. Chem. Phys. 18, 30484–30490 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Juarez-Perez, E. J. et al. Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    Pintilie, L. & Alexe, M. Ferroelectric-like hysteresis loop in nonferroelectric systems. Appl. Phys. Lett. 87, 112903 (2005).

    Article  Google Scholar 

  28. 28.

    Pierret, R. F. Semiconductor Device Fundamentals 213–214 (Addison-Wesley, 1996).

  29. 29.

    Liu, Y., Yang, Q., Zhang, Y., Yang, Z. & Wang, Z. L. Nanowire piezo-phototronic photodetector: theory and experimental design. Adv. Mater. 24, 1410–1417 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Meirzadeh, E. et al. Surface pyroelectricity in cubic SrTiO3. Adv. Mat. 31, 1904733 (2019).

    CAS  Article  Google Scholar 

  31. 31.

    Catalan, G. & Noheda, B. Surface polarization feels the heat. Nature 575, 600–602 (2019).

    Article  Google Scholar 

  32. 32.

    Marinov, Y. et al. Photoflexoelectric effects in a homeotropic guest-host nematic. Europhys. Lett. 41, 513–518 (1998).

    CAS  Article  Google Scholar 

  33. 33.

    Weddell, A. S. et al. A survey of multi-source energy harvesting systems. In 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE) 905–908 (IEEE, 2013).

Download references


This work was supported by the National Natural Science Foundation of China under grant nos. 51962020, 51972157, 11574126 and 11604135, and partly by the National Key Research and Development Plan of China (2017YFB0406300). L.S. and S.K. thank Nanchang University for support. G.C. acknowledges support from the Generalitat de Catalunya (Grant 2017 SGR 579) and from MINECO (National Plan MAT2016-77100-C2-1-P and Severo Ochoa SEV-2017-0706). M.S. acknowledges the support of MINECO through grants no. MAT2016-77100-C2-2-P and no. SEV-2015-0496, Generalitat de Catalunya (grant no. 2017 SGR1506) and the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant no. 724529). We thank D Torres for the graphic design of Fig. 2a,b.

Author information




G.C. and L.S. conceived the idea and coordinated this work. M.S. produced the theoretical model. G.C. wrote the paper. L.S., S.K., L.F., W.H., Z.W. and J.G. prepared the samples and performed the photoflexoelectric experiments. X.J., L.W., S.L., F.L., Z.R., R.-K.Z., X.Y., Y.Z. and Y.W. made the other experimental measurements and joined the discussions.

Corresponding authors

Correspondence to Longlong Shu or Gustau Catalan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Table 1 and refs. 1–13.

Source data

Source Data Fig. 1

Experimental data points of Fig. 1a–d.

Source Data Fig. 2

Experimental data points of Fig. 2c,d.

Source Data Fig. 3

Experimental data points of Fig. 3a–d.

Source Data Fig. 4

Experimental data points of Fig. 4a and literature data of Fig. 4b.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shu, L., Ke, S., Fei, L. et al. Photoflexoelectric effect in halide perovskites. Nat. Mater. 19, 605–609 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing