Visualizing coexisting surface states in the weak and crystalline topological insulator Bi2TeI


Dual topological materials are unique topological phases that host coexisting surface states of different topological nature on the same or on different material facets. Here, we show that Bi2TeI is a dual topological insulator. It exhibits band inversions at two time reversal symmetry points of the bulk band, which classify it as a weak topological insulator with metallic states on its ‘side’ surfaces. The mirror symmetry of the crystal structure concurrently classifies it as a topological crystalline insulator. We investigated Bi2TeI spectroscopically to show the existence of both two-dimensional Dirac surface states, which are susceptible to mirror symmetry breaking, and one-dimensional channels that reside along the step edges. Their mutual coexistence on the step edge, where both facets join, is facilitated by momentum and energy segregation. Our observation of a dual topological insulator should stimulate investigations of other dual topology classes with distinct surface manifestations coexisting at their boundaries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Dual topological classification in Bi2TeI.
Fig. 2: TCI surface states under mirror symmetry-breaking perturbation.
Fig. 3: 1D edge channels of a WTI.
Fig. 4: Interaction between the TCI and WTI surface states coexisting on hinges.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2020).

    Article  Google Scholar 

  2. 2.

    Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    Hsieh, D. et al. Observation of unconventional quantum spin textures in topological insulators. Science 323, 919–922 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Fu, L., Kane, C. & Mele, E. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  Google Scholar 

  5. 5.

    Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Article  Google Scholar 

  6. 6.

    Zeljkovic, I. et al. Dirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators. Nat. Mater. 14, 318–324 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Slager, R. J., Mesaros, A., Jurici, V. & Zaanen, J. The space group classification of topological band-insulators. Nat. Phys. 9, 98–102 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Rauch, T., Flieger, M., Henk, J., Mertig, I. & Ernst, A. Dual topological character of chalcogenides: theory for Bi2Te3. Phys. Rev. Lett. 112, 016802 (2014).

    Article  Google Scholar 

  9. 9.

    Niu, C. et al. Robust dual topological character with spin-valley polarization in a monolayer of the Dirac semimetal Na3Bi. Phys. Rev. B 95, 075404 (2017).

    Article  Google Scholar 

  10. 10.

    Facio, J. I. et al. Dual topology in jacutingaite Pt2HgSe3. Phys. Rev. Mater. 3, 074202 (2019).

    CAS  Article  Google Scholar 

  11. 11.

    Lau, A., Koepernik, K., van den Brink, J. & Ortix, C. Generic coexistence of Fermi arcs and Dirac cones on the surface of time-reversal invariant Weyl semimetals. Phys. Rev. Lett. 119, 076801 (2017).

    Article  Google Scholar 

  12. 12.

    Sheng, X. L., Yu, Z. M., Yu, R., Weng, H. & Yang, S. A. d Orbital topological insulator and semimetal in the antifluorite Cu2S family: contrasting spin helicities, nodal box, and hybrid surface states. J. Phys. Chem. Lett. 8, 3506–3511 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Grushin, A. G., Venderbos, J. W. F. & Bardarson, J. H. Coexistence of Fermi arcs with two-dimensional gapless Dirac states. Phys. Rev. B 91, 121109(R) (2015).

    Article  Google Scholar 

  14. 14.

    Rusinov, I. P. et al. Mirrror-symmetry protected non-TRIM surface state in the weak topological insulator Bi2TeI. Sci. Rep. 6, 20734 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Zeunger, A. et al. Synthesis, crystal and topological electronic structures of new bismuth tellurohalides Bi2TeBr and Bi3TeBr. Chem. Mater. 30, 5272–5284 (2018).

    Article  Google Scholar 

  16. 16.

    Eschbach, M. et al. Bi1Te1 is a dual topological insulator. Nat. Commun. 8, 14976 (2017).

    Article  Google Scholar 

  17. 17.

    Savilov, S. V. et al. New subvalent bismuth telluroiodides incorporating Bi2 layers: the crystal and electronic structure of Bi2TeI. Russ. Chem. Bull. 54, 87–92 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    Tang, P. et al. Weak topological insulators induced by the interlayer coupling: a first-principles study of stacked Bi2TeI. Phys. Rev. B 89, 041409 (2014).

    Article  Google Scholar 

  19. 19.

    Zeugner, A. et al. Modular design with 2D topological-insulator building blocks: optimized synthesis and crystal growth and crystal and electronic structures of BixTeI (x = 2, 3). Chem. Mater. 29, 1321–1337 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Murakami, S. Quantum spin Hall effect and enhanced magnetic response by spin–orbit coupling. Phys. Rev. Lett. 97, 236805 (2006).

    Article  Google Scholar 

  22. 22.

    Ringel, Z., Kraus, Y. E. & Stern, A. The strong side of weak topological insulators. Phys. Rev. B 86, 045102 (2012).

    Article  Google Scholar 

  23. 23.

    Fulga, I. C., Avraham, N., Beidenkopf, H. & Stern, A. Coupled-layer description of topological crystalline insulators. Phys. Rev. B 94, 125405 (2016).

    Article  Google Scholar 

  24. 24.

    Schindler, F. et al. Higher-order topological insulators. Sci. Adv. 4, eaat0346 (2018).

    Article  Google Scholar 

  25. 25.

    Langbehn, J., Peng, Y., Trifunovic, L., von Oppen, F. & Brouwer, P. W. Reflection-symmetric second-order topological insulators and superconductors. Phys. Rev. Lett. 119, 246401 (2017).

    Article  Google Scholar 

  26. 26.

    Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B 96, 245115 (2017).

    Article  Google Scholar 

  27. 27.

    Roushan, P. et al. Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–1109 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    Fu, L. & Kane, C. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  Google Scholar 

  29. 29.

    Yang, F. et al. Spatial and energy distribution of topological edge states in single Bi(111) bilayer. Phys. Rev. Lett. 109, 016801 (2012).

    Article  Google Scholar 

  30. 30.

    Li, X.-B. et al. Experimental observation of topological edge states at the surface step edge of the topological insulator ZrTe5. Phys. Rev. Lett. 116, 176803 (2016).

    Article  Google Scholar 

  31. 31.

    Wu, R. et al. Evidence for topological edge states in a large energy gap near the step edges on the surface of ZrTe5. Phys. Rev. X 6, 021017 (2016).

    Google Scholar 

  32. 32.

    Pauly, C. et al. Subnanometre-wide electron channels protected by topology. Nat. Phys. 11, 338–343 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Rasche, B. et al. Stacked topological insulator built from bismuth-based graphene sheet analogues. Nat. Mater. 12, 422–425 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Sessi, P. et al. Robust spin-polarized midgap states at step edges of topological crystalline insulators. Science 354, 1269 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Baum, Y., Posske, T., Fulga, I. C., Trauzettel, B. & Stern, A. Coexisting edge states and gapless bulk in topological states of matter. Phys. Rev. Lett. 114, 136801 (2015).

    Article  Google Scholar 

  36. 36.

    Soumyanarayanan, A. & Hoffman, J. E. Momentum-resolved STM studies of Rashba-split surface states on the topological semimetal Sb. J. Electron Spectros. Relat. Phenom. 201, 66–73 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Turner, A. M. & Vishwanath, A. in Topological Insulators Vol. 6 (eds Franz, M. & Molenkamp, L.) 293–324 (Elsevier, 2013).

  38. 38.

    Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    CAS  Article  Google Scholar 

  39. 39.

    Richardella, A. et al. Visualizing critical correlations near the metal-insulator transition in Ga1−xMnxAs. Science 327, 665–669 (2010).

    CAS  Article  Google Scholar 

  40. 40.

    Hashimoto, K. et al. Quantum hall transition in real space: from localized to extended states. Phys. Rev. Lett. 101, 256802 (2008).

    CAS  Article  Google Scholar 

Download references


N.A., H.B., B.Y. and C.F. acknowledge the German–Israeli Foundation for Scientific Research and Development (GIF grant no. I-1364-303.7/2016). H.B. and N.A. acknowledge the European Research Council (ERC, project no. TOPO NW), B.Y. acknowledges support by the Ruth and Herman Albert Scholars Program for New Scientists in Weizmann Institute of Science, Israel. C.F.’s work was financially supported by the ERC Advanced (project no. 742068, ‘TOPMAT’). A.Z. and A.I. acknowledge the German Research Foundation (DFG) in the framework of the Special Priority Program 1666 ‘Topological Insulators’ (IS 250/1-2) and Würzburg–Dresden Cluster of Excellence ct.qmat (EXC 2147, Project id 39085490). We are grateful to A. Stern for fruitful discussions and to H. Eizenshtat for his contribution to the measurements.

Author information




A.K.N., A.S. and A.N. acquired the data and performed the analysis. Y.Q., A.I., A.Z. and L.P. grew and characterized the samples. H.F., Y.S. and B.Y. calculated the ab initio model. C.F., H.B. and N.A. conceived the experiment and wrote the manuscript.

Corresponding author

Correspondence to Nurit Avraham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Avraham, N., Kumar Nayak, A., Steinbok, A. et al. Visualizing coexisting surface states in the weak and crystalline topological insulator Bi2TeI. Nat. Mater. 19, 610–616 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing