Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature

Abstract

Optically addressable spins in wide-bandgap semiconductors are a promising platform for exploring quantum phenomena. While colour centres in three-dimensional crystals such as diamond and silicon carbide were studied in detail, they were not observed experimentally in two-dimensional (2D) materials. Here, we report spin-dependent processes in the 2D material hexagonal boron nitride (hBN). We identify fluorescence lines associated with a particular defect, the negatively charged boron vacancy (\({\mathrm{V}}_{\mathrm{B}}^ -\)), showing a triplet (S = 1) ground state and zero-field splitting of ~3.5 GHz. We establish that this centre exhibits optically detected magnetic resonance at room temperature and demonstrate its spin polarization under optical pumping, which leads to optically induced population inversion of the spin ground state—a prerequisite for coherent spin-manipulation schemes. Our results constitute a step forward in establishing 2D hBN as a prime platform for scalable quantum technologies, with potential for spin-based quantum information and sensing applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: ODMR of an hBN single crystal at room temperature, T = 300 K.
Fig. 2: X-band EPR studies of the \({\mathrm{V}}_{\mathrm{B}}^ -\) centre in the hBN single crystal sample at T = 5 K.
Fig. 3: Determination of the sign of the ZFS parameter D.
Fig. 4: Angular dependence of EPR spectra (green traces) and simulations (blue traces) in hBN single crystal.

Data availability

The raw data supporting the findings of this study are available from the corresponding authors upon request.

References

  1. 1.

    Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

  2. 2.

    Urbaszek, B. & Srivastava, A. Materials in flatland twist and shine. Nature 567, 39–40 (2019).

  3. 3.

    Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

  4. 4.

    Toth, M. & Aharonovich, I. Single photon sources in atomically thin materials. Annu. Rev. Phys. Chem. 70, 132–142 (2019).

  5. 5.

    Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

  6. 6.

    Tran, T. T. et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano 10, 7331–7338 (2016).

  7. 7.

    Jungwirth, N. R. et al. Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride. Nano Lett. 16, 6052–6057 (2016).

  8. 8.

    Shotan, Z. et al. Photoinduced modification of single-photon emitters in hexagonal boron nitride. ACS Photonics 3, 2490–2496 (2016).

  9. 9.

    Kianinia, M. et al. Robust solid-state quantum system operating at 800 K. ACS Photonics 4, 768–773 (2017).

  10. 10.

    Tawfik, S. A. et al. First-principles investigation of quantum emission from hBN defects. Nanoscale 9, 13575–13582 (2017).

  11. 11.

    Abdi, M., Chou, J.-P., Gali, A. & Plenio, M. B. Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis. ACS Photonics 5, 1967–1976 (2018).

  12. 12.

    Vogl, T., Campbell, G., Buchler, B. C., Lu, Y. & Lam, P. K. Fabrication and deterministic transfer of high-quality quantum emitters in hexagonal boron nitride. ACS Photonics 5, 2305–2312 (2018).

  13. 13.

    Proscia, N. V. et al. Near-deterministic activation of room temperature quantum emitters in hexagonal boron nitride. Optica 5, 1128–1134 (2018).

  14. 14.

    Li, X. et al. Nonmagnetic quantum emitters in boron nitride with ultranarrow and sideband-free emission spectra. ACS Nano 11, 6652–6660 (2017).

  15. 15.

    Exarhos, A. L., Hopper, D. A., Grote, R. R., Alkauskas, A. & Bassett, L. C. Optical signatures of quantum emitters in suspended hexagonal boron nitride. ACS Nano 11, 3328–3336 (2017).

  16. 16.

    Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018).

  17. 17.

    Gao, W. B., Imamoglu, A., Bernien, H. & Hanson, R. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nat. Photonics 9, 363–373 (2015).

  18. 18.

    Yılmaz, S. T., Fallahi, P. & Imamoğlu, A. Quantum-dot-spin single-photon interface. Phys. Rev. Lett. 105, 033601 (2010).

  19. 19.

    Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).

  20. 20.

    Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

  21. 21.

    Aslam, N. et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 357, 67–71 (2017).

  22. 22.

    Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016).

  23. 23.

    Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

  24. 24.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  25. 25.

    Exarhos, A. L., Hopper, D. A., Patel, R. N., Doherty, M. W. & Bassett, L. C. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat. Commun. 10, 222 (2019).

  26. 26.

    Toledo, J. R. et al. Electron paramagnetic resonance signature of point defects in neutron-irradiated hexagonal boron nitride. Phys. Rev. B 98, 155203 (2018).

  27. 27.

    Katzir, A., Suss, J. T., Zunger, A. & Halperin, A. Point defects in hexagonal boron nitride. I. EPR, thermoluminescence, and thermally-stimulated-current measurements. Phys. Rev. B 11, 2370–2377 (1975).

  28. 28.

    Ivády, V. et al. Ab initio theory of negatively charged boron vacancy qubit in hBN. Preprint at https://arxiv.org/abs/1910.07767 (2019).

  29. 29.

    Huang, B., Xiang, H., Yu, J. & Wei, S.-H. Effective control of the charge and magnetic states of transition-metal atoms on single-layer boron nitride. Phys. Rev. Lett. 108, 206802 (2012).

  30. 30.

    Weston, L., Wickramaratne, D., Mackoit, M., Alkauskas, A. & van de Walle, C. G. Native point defects and impurities in hexagonal boron nitride. Phys. Rev. B 97, 214104 (2018).

  31. 31.

    Feng, J. et al. Imaging of optically active defects with nanometer resolution. Nano Lett. 18, 1739–1744 (2018).

  32. 32.

    Dietrich, A. et al. Observation of Fourier transform limited lines in hexagonal boron nitride. Phys. Rev. B 98, 081414 (2018).

  33. 33.

    Abdi, M., Hwang, M.-J., Aghtar, M. & Plenio, M. B. Spin-mechanical scheme with color centers in hexagonal boron nitride membranes. Phys. Rev. Lett. 119, 233602 (2017).

  34. 34.

    Shandilya, P. K. et al. Hexagonal boron nitride cavity optomechanics. Nano Lett. 19, 1343–1350 (2019).

  35. 35.

    Ye, M., Seo, H. & Galli, G. Spin coherence in two-dimensional materials. npj Comput. Mater. 5, 44 (2019).

  36. 36.

    Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

Download references

Acknowledgements

V.D. acknowledges financial support from the DFG through the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter—ct.qmat (EXC 2147, project-id 39085490) and DY18/13-1. V.S. gratefully acknowledges the financial support of the Alexander von Humboldt (AvH) Foundation. G.M. acknowledges the support of RSF grant no. 17-72-20053. The Australian Research Council (via DP180100077, DP190101058 and DE180100810), the Asian Office of Aerospace Research and Development grant FA2386-17-1-4064, the Office of Naval Research Global under grant number N62909-18-1-2025 are gratefully acknowledged. I.A. is grateful to the Humboldt Foundation for their generous support. The authors are grateful to the neutron irradiation services at CTDN, Brazil.

Author information

Affiliations

Authors

Contributions

The experimental set-ups were implemented and the PL, X-EPR and ODMR measurements were performed by A.G., C.K., K.K., M.K., C.B., A.S. and V.S. I.A., M.K., C.B. and M.T. fabricated the samples and performed optical characterization. K.K. performed neutron irradiation. S.O., G.M. and V.S. performed pulsed EPR experiments. V.D. and I.A. conceived and supervised the project. All the authors contributed to analysis of the data, discussions and to the writing of the paper.

Corresponding authors

Correspondence to Igor Aharonovich or Vladimir Dyakonov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1−6 with figure captions, discussion and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gottscholl, A., Kianinia, M., Soltamov, V. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020). https://doi.org/10.1038/s41563-020-0619-6

Download citation

Further reading