Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature


Optically addressable spins in wide-bandgap semiconductors are a promising platform for exploring quantum phenomena. While colour centres in three-dimensional crystals such as diamond and silicon carbide were studied in detail, they were not observed experimentally in two-dimensional (2D) materials. Here, we report spin-dependent processes in the 2D material hexagonal boron nitride (hBN). We identify fluorescence lines associated with a particular defect, the negatively charged boron vacancy (\({\mathrm{V}}_{\mathrm{B}}^ -\)), showing a triplet (S = 1) ground state and zero-field splitting of ~3.5 GHz. We establish that this centre exhibits optically detected magnetic resonance at room temperature and demonstrate its spin polarization under optical pumping, which leads to optically induced population inversion of the spin ground state—a prerequisite for coherent spin-manipulation schemes. Our results constitute a step forward in establishing 2D hBN as a prime platform for scalable quantum technologies, with potential for spin-based quantum information and sensing applications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: ODMR of an hBN single crystal at room temperature, T = 300 K.
Fig. 2: X-band EPR studies of the \({\mathrm{V}}_{\mathrm{B}}^ -\) centre in the hBN single crystal sample at T = 5 K.
Fig. 3: Determination of the sign of the ZFS parameter D.
Fig. 4: Angular dependence of EPR spectra (green traces) and simulations (blue traces) in hBN single crystal.

Data availability

The raw data supporting the findings of this study are available from the corresponding authors upon request.


  1. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    CAS  Article  Google Scholar 

  2. Urbaszek, B. & Srivastava, A. Materials in flatland twist and shine. Nature 567, 39–40 (2019).

    CAS  Article  Google Scholar 

  3. Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    CAS  Article  Google Scholar 

  4. Toth, M. & Aharonovich, I. Single photon sources in atomically thin materials. Annu. Rev. Phys. Chem. 70, 132–142 (2019).

    Article  Google Scholar 

  5. Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    CAS  Article  Google Scholar 

  6. Tran, T. T. et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano 10, 7331–7338 (2016).

    CAS  Article  Google Scholar 

  7. Jungwirth, N. R. et al. Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride. Nano Lett. 16, 6052–6057 (2016).

    CAS  Article  Google Scholar 

  8. Shotan, Z. et al. Photoinduced modification of single-photon emitters in hexagonal boron nitride. ACS Photonics 3, 2490–2496 (2016).

    CAS  Article  Google Scholar 

  9. Kianinia, M. et al. Robust solid-state quantum system operating at 800 K. ACS Photonics 4, 768–773 (2017).

    CAS  Article  Google Scholar 

  10. Tawfik, S. A. et al. First-principles investigation of quantum emission from hBN defects. Nanoscale 9, 13575–13582 (2017).

    CAS  Article  Google Scholar 

  11. Abdi, M., Chou, J.-P., Gali, A. & Plenio, M. B. Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis. ACS Photonics 5, 1967–1976 (2018).

    CAS  Article  Google Scholar 

  12. Vogl, T., Campbell, G., Buchler, B. C., Lu, Y. & Lam, P. K. Fabrication and deterministic transfer of high-quality quantum emitters in hexagonal boron nitride. ACS Photonics 5, 2305–2312 (2018).

    CAS  Article  Google Scholar 

  13. Proscia, N. V. et al. Near-deterministic activation of room temperature quantum emitters in hexagonal boron nitride. Optica 5, 1128–1134 (2018).

    CAS  Article  Google Scholar 

  14. Li, X. et al. Nonmagnetic quantum emitters in boron nitride with ultranarrow and sideband-free emission spectra. ACS Nano 11, 6652–6660 (2017).

    CAS  Article  Google Scholar 

  15. Exarhos, A. L., Hopper, D. A., Grote, R. R., Alkauskas, A. & Bassett, L. C. Optical signatures of quantum emitters in suspended hexagonal boron nitride. ACS Nano 11, 3328–3336 (2017).

    CAS  Article  Google Scholar 

  16. Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018).

    Article  Google Scholar 

  17. Gao, W. B., Imamoglu, A., Bernien, H. & Hanson, R. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nat. Photonics 9, 363–373 (2015).

    CAS  Article  Google Scholar 

  18. Yılmaz, S. T., Fallahi, P. & Imamoğlu, A. Quantum-dot-spin single-photon interface. Phys. Rev. Lett. 105, 033601 (2010).

    Article  Google Scholar 

  19. Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).

    CAS  Article  Google Scholar 

  20. Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

    CAS  Article  Google Scholar 

  21. Aslam, N. et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 357, 67–71 (2017).

    CAS  Article  Google Scholar 

  22. Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016).

    CAS  Article  Google Scholar 

  23. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    CAS  Article  Google Scholar 

  24. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Article  Google Scholar 

  25. Exarhos, A. L., Hopper, D. A., Patel, R. N., Doherty, M. W. & Bassett, L. C. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat. Commun. 10, 222 (2019).

    Article  Google Scholar 

  26. Toledo, J. R. et al. Electron paramagnetic resonance signature of point defects in neutron-irradiated hexagonal boron nitride. Phys. Rev. B 98, 155203 (2018).

    CAS  Article  Google Scholar 

  27. Katzir, A., Suss, J. T., Zunger, A. & Halperin, A. Point defects in hexagonal boron nitride. I. EPR, thermoluminescence, and thermally-stimulated-current measurements. Phys. Rev. B 11, 2370–2377 (1975).

    CAS  Article  Google Scholar 

  28. Ivády, V. et al. Ab initio theory of negatively charged boron vacancy qubit in hBN. Preprint at (2019).

  29. Huang, B., Xiang, H., Yu, J. & Wei, S.-H. Effective control of the charge and magnetic states of transition-metal atoms on single-layer boron nitride. Phys. Rev. Lett. 108, 206802 (2012).

    Article  Google Scholar 

  30. Weston, L., Wickramaratne, D., Mackoit, M., Alkauskas, A. & van de Walle, C. G. Native point defects and impurities in hexagonal boron nitride. Phys. Rev. B 97, 214104 (2018).

    CAS  Article  Google Scholar 

  31. Feng, J. et al. Imaging of optically active defects with nanometer resolution. Nano Lett. 18, 1739–1744 (2018).

    CAS  Article  Google Scholar 

  32. Dietrich, A. et al. Observation of Fourier transform limited lines in hexagonal boron nitride. Phys. Rev. B 98, 081414 (2018).

    CAS  Article  Google Scholar 

  33. Abdi, M., Hwang, M.-J., Aghtar, M. & Plenio, M. B. Spin-mechanical scheme with color centers in hexagonal boron nitride membranes. Phys. Rev. Lett. 119, 233602 (2017).

    Article  Google Scholar 

  34. Shandilya, P. K. et al. Hexagonal boron nitride cavity optomechanics. Nano Lett. 19, 1343–1350 (2019).

    Article  Google Scholar 

  35. Ye, M., Seo, H. & Galli, G. Spin coherence in two-dimensional materials. npj Comput. Mater. 5, 44 (2019).

    Article  Google Scholar 

  36. Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    CAS  Article  Google Scholar 

Download references


V.D. acknowledges financial support from the DFG through the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter—ct.qmat (EXC 2147, project-id 39085490) and DY18/13-1. V.S. gratefully acknowledges the financial support of the Alexander von Humboldt (AvH) Foundation. G.M. acknowledges the support of RSF grant no. 17-72-20053. The Australian Research Council (via DP180100077, DP190101058 and DE180100810), the Asian Office of Aerospace Research and Development grant FA2386-17-1-4064, the Office of Naval Research Global under grant number N62909-18-1-2025 are gratefully acknowledged. I.A. is grateful to the Humboldt Foundation for their generous support. The authors are grateful to the neutron irradiation services at CTDN, Brazil.

Author information

Authors and Affiliations



The experimental set-ups were implemented and the PL, X-EPR and ODMR measurements were performed by A.G., C.K., K.K., M.K., C.B., A.S. and V.S. I.A., M.K., C.B. and M.T. fabricated the samples and performed optical characterization. K.K. performed neutron irradiation. S.O., G.M. and V.S. performed pulsed EPR experiments. V.D. and I.A. conceived and supervised the project. All the authors contributed to analysis of the data, discussions and to the writing of the paper.

Corresponding authors

Correspondence to Igor Aharonovich or Vladimir Dyakonov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1−6 with figure captions, discussion and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gottscholl, A., Kianinia, M., Soltamov, V. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing