Bi-directional tuning of thermal transport in SrCoOx with electrochemically induced phase transitions


Unlike the wide-ranging dynamic control of electrical conductivity, there does not exist an analogous ability to tune thermal conductivity by means of electric potential. The traditional picture assumes that atoms inserted into a material’s lattice act purely as a source of scattering for thermal carriers, which can only reduce thermal conductivity. In contrast, here we show that the electrochemical control of oxygen and proton concentration in an oxide provides a new ability to bi-directionally control thermal conductivity. On electrochemically oxygenating the brownmillerite SrCoO2.5 to the perovskite SrCoO3–δ, the thermal conductivity increases by a factor of 2.5, whereas protonating it to form hydrogenated SrCoO2.5 effectively reduces the thermal conductivity by a factor of four. This bi-directional tuning of thermal conductivity across a nearly 10 ± 4-fold range at room temperature is achieved by using ionic liquid gating to trigger the ‘tri-state’ phase transitions in a single device. We elucidated the effects of these anionic and cationic species, and the resultant changes in lattice constants and lattice symmetry on thermal conductivity by combining chemical and structural information from X-ray absorption spectroscopy with thermoreflectance thermal conductivity measurements and ab initio calculations. This ability to control multiple ion types, multiple phase transitions and electronic conductivity that spans metallic through to insulating behaviour in oxides by electrical means provides a new framework for tuning thermal transport over a wide range.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Ionic liquid and ion gel gating on the BM-SCO.
Fig. 2: Thermal conductivity tuning in SrCoOx characterized by TDTR measurements.
Fig. 3: Effect of oxygen stoichiometry (x) on the thermal conductivity of SrCoOx.
Fig. 4: X-ray absorption spectra collected using the partial-fluorescence-yield (PFY) mode on the H-SCO thin film by using ion gel.
Fig. 5: The effect of H+ concentration on the thermal transport property of SCO.

Data availability

Experimental and computational data are available from the corresponding authors on reasonable request.


  1. 1.

    Wehmeyer, G., Yabuki, T., Monachon, C., Wu, J. & Dames, C. Thermal diodes, regulators, and switches: Physical mechanisms and potential applications. Appl. Phys. Rev. 4, 041304 (2017).

    Google Scholar 

  2. 2.

    Abeles, B. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys. Rev. 131, 1906–1911 (1963).

    Google Scholar 

  3. 3.

    Qian, X., Gu, X., Dresselhaus, M. S. & Yang, R. Anisotropic tuning of graphite thermal conductivity by lithium intercalation. J. Phys. Chem. Lett. 7, 4744–4750 (2016).

    CAS  Google Scholar 

  4. 4.

    Zhu, G. et al. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation. Nat. Commun. 7, 13211 (2016).

    CAS  Google Scholar 

  5. 5.

    Kang, J. S., Ke, M. & Hu, Y. Ionic intercalation in two-dimensional van der Waals materials: in situ characterization and electrochemical control of the anisotropic thermal conductivity of black phosphorus. Nano Lett. 17, 1431–1438 (2017).

    CAS  Google Scholar 

  6. 6.

    Wu, X. et al. Glass-like through-plane thermal conductivity induced by oxygen vacancies in nanoscale epitaxial La0.5Sr0.5CoO3–δ. Adv. Funct. Mater. 27, 1704233 (2017).

    Google Scholar 

  7. 7.

    Cho, J. et al. Electrochemically tunable thermal conductivity of lithium cobalt oxide. Nat. Commun. 5, 1–6 (2014).

    CAS  Google Scholar 

  8. 8.

    Li, X., Maute, K., Dunn, M. L. & Yang, R. Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B 81, 1–11 (2010).

    Google Scholar 

  9. 9.

    Murphy, K. F., Piccione, B., Zanjani, M. B., Lukes, J. R. & Gianola, D. S. Strain- and defect-mediated thermal conductivity in silicon nanowires. Nano Lett. 14, 3785–3792 (2014).

    CAS  Google Scholar 

  10. 10.

    Kizuka, H. et al. Temperature dependence of thermal conductivity of VO2 thin films across metal–insulator transition. Jpn J. Appl. Phys. 54, 053201 (2015).

    Google Scholar 

  11. 11.

    Ihlefeld, J. F. et al. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett. 15, 1791–1795 (2015).

    CAS  Google Scholar 

  12. 12.

    Lu, N. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 546, 124–128 (2017).

    CAS  Google Scholar 

  13. 13.

    Lu, Q., Chen, Y., Bluhm, H. & Yildiz, B. Electronic structure evolution of SrCoOx during electrochemically driven phase transition Probed by in situ X-ray Spectroscopy. J. Phys. Chem. C 120, 24148–24157 (2016).

    CAS  Google Scholar 

  14. 14.

    Lu, Q. & Yildiz, B. Voltage-controlled topotactic phase transition in thin-film SrCoOx monitored by in situ X-ray diffraction. Nano Lett. 16, 1186–1193 (2016).

    CAS  Google Scholar 

  15. 15.

    Jeen, H. et al. Reversible redox reactions in an epitaxially stabilized SrCoOx oxygen sponge. Nat. Mater. 12, 1057–1063 (2013).

    CAS  Google Scholar 

  16. 16.

    Choi, W. S. et al. Reversal of the lattice structure in SrCoOx epitaxial thin films studied by real-time optical spectroscopy and first-principles calculations. Phys. Rev. Lett. 111, 1–5 (2013).

    Google Scholar 

  17. 17.

    Lindsay, L. & Broido, D. A. Three-phonon phase space and lattice thermal conductivity in semiconductors. J. Phys. Condens. Matter 20, 165209 (2008).

    Google Scholar 

  18. 18.

    Lee, K. H. et al. ‘Cut and stick’ rubbery ion gels as high capacitance gate dielectrics. Adv. Mater. 24, 4457–4462 (2012).

    CAS  Google Scholar 

  19. 19.

    Capinski, W. S. & Maris, H. J. Improved apparatus for picosecond pump‐and‐probe optical measurements. Rev. Sci. Instrum. 67, 2720–2726 (1996).

    CAS  Google Scholar 

  20. 20.

    Cahill, D. G., Goodson, K. & Majumdar, A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat. Transf. 124, 223 (2002).

    CAS  Google Scholar 

  21. 21.

    Schmidt, A. J., Chen, X. & Chen, G. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump–probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114902 (2008).

    Google Scholar 

  22. 22.

    van Roekeghem, A., Carrete, J., Oses, C., Curtarolo, S. & Mingo, N. High-throughput computation of thermal conductivity of high-temperature solid phases: the case of oxide and fluoride perovskites. Phys. Rev. X 6, 41061 (2016).

    Google Scholar 

  23. 23.

    Luckyanova, M. N. et al. Thermal conductivity control by oxygen defect concentration modification in reducible oxides: the case of Pr0.1Ce0.9O2–δ thin films. Appl. Phys. Lett. 104, 061911 (2014).

    Google Scholar 

  24. 24.

    Toberer, E. S., Baranowski, L. L. & Dames, C. Advances in thermal conductivity. Annu. Rev. Mater. Res. 42, 179–209 (2012).

    CAS  Google Scholar 

  25. 25.

    Lee, J. H. et al. Strongly coupled magnetic and electronic transitions in multivalent strontium cobaltites. Sci. Rep. 7, 16066 (2017).

    CAS  Google Scholar 

  26. 26.

    Nemudry, a, Rudolf, P. & Schöllhorn, R. Topotactic electrochemical redox reactions of the defect perovskite SrCoO2.5+x. Chem. Mater. 4756, 2232–2238 (1996).

    Google Scholar 

  27. 27.

    Bishop, S. R. et al. Chemical expansion: implications for electrochemical energy storage and conversion devices. Annu. Rev. Mater. Res. 44, 205–239 (2014).

    CAS  Google Scholar 

  28. 28.

    Ning, S. et al. Anomalous defect dependence of thermal conductivity in epitaxial WO3 thin films. Adv. Mater. 31, 1903738 (2019).

    CAS  Google Scholar 

  29. 29.

    Hu, Z. et al. Hole distribution between the Ni 3d and O 2p orbitals in Nd2–xSrxNiO4–δ. Phys. Rev. B 61, 3739–3744 (2000).

    CAS  Google Scholar 

  30. 30.

    Abbate, M. et al. Controlled-valence properties of La1–xSrxFeO3 and La1–xSrxMnO3 studied by soft-X-ray absorption spectroscopy. Phys. Rev. B 46, 4511–4519 (1992).

    CAS  Google Scholar 

  31. 31.

    Abbate, M. et al. Electronic structure and spin-state transition of LaCoO3. Phys. Rev. B 47, 16124–16130 (1993).

    CAS  Google Scholar 

  32. 32.

    Burnus, T. et al. Valence, spin, and orbital state of Co ions in one-dimensional Ca3Co2O6: an X-ray absorption and magnetic circular dichroism study. Phys. Rev. B 74, 245111 (2006).

    Google Scholar 

  33. 33.

    Fripiat, J. J. & Lin, X. Hydrogen intercalation within transition metal oxides: entropy, enthalpy, and charge transfer. J. Phys. Chem. 96, 1437–1444 (1992).

    CAS  Google Scholar 

  34. 34.

    Cai, G., Wang, J. & Lee, P. S. Next-generation multifunctional electrochromic devices. Acc. Chem. Res. 49, 1469–1476 (2016).

    CAS  Google Scholar 

  35. 35.

    Hellman, O., Abrikosov, I. A. & Simak, S. I. Lattice dynamics of anharmonic solids from first principles. Phys. Rev. B 84, 180301 (2011).

    Google Scholar 

  36. 36.

    Hellman, O., Steneteg, P., Abrikosov, I. A. & Simak, S. I. Temperature dependent effective potential method for accurate free energy calculations of solids. Phys. Rev. B 87, 104111 (2013).

    Google Scholar 

  37. 37.

    Hellman, O. & Abrikosov, I. A. Temperature-dependent effective third-order interatomic force constants from first principles. Phys. Rev. B 88, 144301 (2013).

    Google Scholar 

  38. 38.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  39. 39.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  40. 40.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    CAS  Google Scholar 

  41. 41.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  42. 42.

    Tadano, T., Gohda, Y. & Tsuneyuki, S. Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations. J. Phys. Condens. Matter 26, 225402 (2014).

    CAS  Google Scholar 

  43. 43.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  44. 44.

    Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    CAS  Google Scholar 

  45. 45.

    Dudarev, S. L., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    CAS  Google Scholar 

  46. 46.

    Lee, J. H. & Rabe, K. M. Coupled magnetic-ferroelectric metal-insulator transition in epitaxially strained SrCoO3 from first principles. Phys. Rev. Lett. 107, 067601 (2011).

    Google Scholar 

  47. 47.

    Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    CAS  Google Scholar 

  48. 48.

    Vosko, S. H., Wilk, L. & Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200–1211 (1980).

    CAS  Google Scholar 

  49. 49.

    Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Google Scholar 

  50. 50.

    Nosé, S. Constant temperature molecular dynamics methods. Prog. Theor. Phys. Suppl. 103, 1–46 (1991).

    Google Scholar 

  51. 51.

    Shiomi, J., Esfarjani, K. & Chen, G. Thermal conductivity of half-Heusler compounds from first-principles calculations. Phys. Rev. B 84, 104302 (2011).

    Google Scholar 

Download references


This work was supported primarily by the MRSEC Program of the National Science Foundation under award number DMR-1419807. This work made use of the Shared Experimental Facilities supported in part by the MRSEC Program of the National Science Foundation under award number DMR-1419807. This research used the IOS Beamline of the National Synchrotron Light Source II, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under contract no. DE-SC0012704. We thank P. Yu from Tsinghua University and his co-workers for sharing the crystal structure files of H-SCO used for the visualization in Fig. 1a. The authors acknowledge the support of computational resources from the National Energy Research Scientific Computing Center (NERSC), a US DOE Office of Science User Facility operated under contract no. DE-AC02-05CH11231; the MIT-PSFC partition of the Engaging cluster at the MGHPCC facility, which was funded by DOE grant no. DE-FG02-91-ER54109, and the MIT-NSE partition funded by MIT; the Extreme Science and Engineering Discovery Environment (XSEDE) Stampede2 at Texas Advanced Computing Center through allocation TG-DMR120025, which is supported by National Science Foundation grant no. ACI-1548562. Q.S. thanks B. Song, K. Chen and J. Zhou for help with TDTR measurements. H.Z. thanks O. Hellman, T. Tadano, J. Yang, L. Sun and Y. Chi for technical help and fruitful discussions.

Author information




Q.L. and J.W. prepared the SCO thin-film samples and performed the electrochemical gating of SCO films by using YSZ, ionic liquid and ion gel as the electrolytes. S.H. and Q.S. performed the TDTR measurements, and H.Z. did the first-principles simulations. Q.L., G.V., I.W. and A.H. performed the XAS measurements. All the authors discussed the results and contributed to the writing of the manuscript. B.Y. and G.C. originated and supervised the research.

Corresponding authors

Correspondence to Gang Chen or Bilge Yildiz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Discussion andy Tables 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Huberman, S., Zhang, H. et al. Bi-directional tuning of thermal transport in SrCoOx with electrochemically induced phase transitions. Nat. Mater. 19, 655–662 (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing