Molecular enhancement of heterogeneous CO2 reduction

Abstract

The electrocatalytic carbon dioxide reduction reaction (CO2RR) addresses the need for storage of renewable energy in valuable carbon-based fuels and feedstocks, yet challenges remain in the improvement of electrosynthesis pathways for highly selective hydrocarbon production. To improve catalysis further, it is of increasing interest to lever synergies between heterogeneous and homogeneous approaches. Organic molecules or metal complexes adjacent to heterogeneous active sites provide additional binding interactions that may tune the stability of intermediates, improving catalytic performance by increasing Faradaic efficiency (product selectivity), as well as decreasing overpotential. We offer a forward-looking perspective on molecularly enhanced heterogeneous catalysis for CO2RR. We discuss four categories of molecularly enhanced strategies: molecular-additive-modified heterogeneous catalysts, immobilized organometallic complex catalysts, reticular catalysts and metal-free polymer catalysts. We introduce present-day challenges in molecular strategies and describe a vision for CO2RR electrocatalysis towards multi-carbon products. These strategies provide potential avenues to address the challenges of catalyst activity, selectivity and stability in the further development of CO2RR.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Molecularly enhanced heterogeneous CO2RR electrocatalysts.
Fig. 2: Classification of molecularly enhanced heterogeneous CO2RR electrocatalysts.
Fig. 3: Examples of action modes of molecular approaches on heterogeneous CO2RR catalysts.
Fig. 4: Future challenges for molecular strategies.

References

  1. 1.

    Hori, Y. In Modern Aspects of Electrochemistry (eds. Vayenas, C. G., White, R. E. & Gamboa-Aldeco, M. E.) 89–189 (Springer, 2008).

  2. 2.

    Thang-Dinh, C. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Google Scholar 

  3. 3.

    Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    CAS  Google Scholar 

  4. 4.

    Benson, E. E., Kubiak, C. P., Sathrum, A. J. & Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38, 89–99 (2009).

    CAS  Google Scholar 

  5. 5.

    Qiao, J., Liu, Y., Hong, F. & Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014).

    CAS  Google Scholar 

  6. 6.

    Cui, X., Li, W., Ryabchuk, P., Junge, K. & Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 1, 385–397 (2018).

    CAS  Google Scholar 

  7. 7.

    Copéret, C. et al. Bridging the gap between industrial and well-defined supported catalysts. Angew. Chem. Int. Ed. 57, 6398–6440 (2018).

    Google Scholar 

  8. 8.

    Armstrong, F. A. & Hirst, J. Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc. Natl Acad. Sci. USA 108, 14049–14054 (2011).

    CAS  Google Scholar 

  9. 9.

    Fesseler, J., Jeoung, J.-H. & Dobbek, H. How the [NiFe4S4] cluster of CO dehydrogenase activates CO2 and NCO. Angew. Chem. Int. Ed. 54, 8560–8564 (2015).

    CAS  Google Scholar 

  10. 10.

    Thomas, J. M., Raja, R. & Lewis, D. W. Single-site heterogeneous catalysts. Angew. Chem. Int. Ed. 44, 6456–6482 (2005).

    CAS  Google Scholar 

  11. 11.

    Singh, M. R., Kwon, Y., Lum, Y., Ager, J. W. & Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138, 13006–13012 (2016).

    CAS  Google Scholar 

  12. 12.

    Li, Y. & Sun, Q. Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Adv. Energy Mater. 6, 1600463 (2016).

    Google Scholar 

  13. 13.

    Corbin, N., Zeng, J., Williams, K. & Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 12, 2093–2125 (2019).

    CAS  Google Scholar 

  14. 14.

    Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012).

    CAS  Google Scholar 

  15. 15.

    Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    CAS  Google Scholar 

  16. 16.

    Xiao, H., Cheng, T. & Goddard, W. A. Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017).

    CAS  Google Scholar 

  17. 17.

    Lum, Y., Cheng, T., Goddard, W. A. & Ager, J. W. Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 140, 9337–9340 (2018).

    CAS  Google Scholar 

  18. 18.

    Liu, X. et al. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nat. Commun. 10, 32 (2019).

    CAS  Google Scholar 

  19. 19.

    Kim, C. et al. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 137, 13844–13850 (2015).

    CAS  Google Scholar 

  20. 20.

    Kim, C. et al. Insight into electrochemical CO2 reduction on surface-molecule-mediated Ag nanoparticles. ACS Catal. 7, 779–785 (2017).

    CAS  Google Scholar 

  21. 21.

    Zhao, Y., Wang, C., Liu, Y., MacFarlane, D. R. & Wallace, G. G. Engineering surface amine modifiers of ultrasmall gold nanoparticles supported on reduced graphene oxide for improved electrochemical CO2 reduction. Adv. Energy Mater. 8, 1801400 (2018).

    Google Scholar 

  22. 22.

    Mun, Y. et al. A novel strategy to develop non-noble metal catalyst for CO2 electroreduction: Hybridization of metal-organic polymer. Appl. Catal. B Environ. 236, 154–161 (2018).

    CAS  Google Scholar 

  23. 23.

    Cao, Z. et al. Chelating N‐heterocyclic carbene ligands enable tuning of electrocatalytic CO2 reduction to formate and carbon monoxide: Surface organometallic chemistry. Angew. Chem. Int. Ed. 57, 4981–4985 (2018).

    CAS  Google Scholar 

  24. 24.

    Fang, Y. & Flake, J. C. Electrochemical reduction of CO2 at functionalized Au electrodes. J. Am. Chem. Soc. 139, 3399–3405 (2017).

    CAS  Google Scholar 

  25. 25.

    Xie, M. S. et al. Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 9, 1687–1695 (2016).

    CAS  Google Scholar 

  26. 26.

    Han, Z., Kortlever, R., Chen, H.-Y., Peters, J. C. & Agapie, T. CO2 reduction selective for C≥2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent. Sci. 3, 853–859 (2017).

    CAS  Google Scholar 

  27. 27.

    Thevenon, A., Rosas-Hernández, A., Peters, J. C. & Agapie, T. In-situ nanostructuring and stabilization of polycrystalline copper by an organic salt additive promotes electrocatalytic CO2 reduction to ethylene. Angew. Chem. Int. Ed. 58, 16952–16958 (2019).

    CAS  Google Scholar 

  28. 28.

    Ovalle, V. J. & Waegele, M. M. Understanding the impact of N-Arylpyridinium ions on the selectivity of CO2 reduction at the Cu/electrolyte interface. J. Phys. Chem. C. 123, 24453–24460 (2019).

    CAS  Google Scholar 

  29. 29.

    Francke, R., Schille, B. & Roemelt, M. Homogeneously catalyzed electroreduction of carbon dioxide—Methods, mechanisms, and catalysts. Chem. Rev. 118, 4631–4701 (2018).

    CAS  Google Scholar 

  30. 30.

    Chapovetsky, A. et al. Pendant hydrogen-bond donors in cobalt catalysts independently enhance CO2 reduction. ACS Cent. Sci. 4, 397–404 (2018).

    CAS  Google Scholar 

  31. 31.

    Göttle, A. J. & Koper, M. T. M. Determinant role of electrogenerated reactive nucleophilic species on selectivity during reduction of CO2 catalyzed by metalloporphyrins. J. Am. Chem. Soc. 140, 4826–4834 (2018).

    Google Scholar 

  32. 32.

    Weng, Z. et al. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J. Am. Chem. Soc. 138, 8076–8079 (2016).

    CAS  Google Scholar 

  33. 33.

    Willkomm, J. et al. Grafting of a molecular rhenium CO2 reduction catalyst onto colloid-imprinted carbon. ACS Appl. Energy Mater. 2, 2414–2418 (2019).

    CAS  Google Scholar 

  34. 34.

    Reuillard, B. et al. Tuning product selectivity for aqueous CO2 reduction with a Mn(bipyridine)-pyrene catalyst immobilized on a carbon nanotube electrode. J. Am. Chem. Soc. 139, 14425–14435 (2017).

    CAS  Google Scholar 

  35. 35.

    Weng, Z. et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 9, 415 (2018).

    Google Scholar 

  36. 36.

    Shen, J. et al. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat. Commun. 6, 8177 (2015).

    Google Scholar 

  37. 37.

    Zhang, X. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017).

    Google Scholar 

  38. 38.

    Jackson, M. N. et al. Strong electronic coupling of molecular sites to graphitic electrodes via pyrazine conjugation. J. Am. Chem. Soc. 140, 1004–1010 (2018).

    CAS  Google Scholar 

  39. 39.

    Oh, S., Gallagher, J. R., Miller, J. T. & Surendranath, Y. Graphite-conjugated rhenium catalysts for carbon dioxide reduction. J. Am. Chem. Soc. 138, 1820–1823 (2016).

    CAS  Google Scholar 

  40. 40.

    Kaminsky, C. J., Wright, J. & Surendranath, Y. Graphite-Conjugation Enhances Porphyrin Electrocatalysis. ACS Catal. 9, 3667–3671 (2019).

    CAS  Google Scholar 

  41. 41.

    Zhu, M., Ye, R., Jin, K., Lazouski, N. & Manthiram, K. Elucidating the reactivity and mechanism of CO2 electroreduction at highly dispersed cobalt phthalocyanine. ACS Energy Lett. 3, 1381–1386 (2018).

    CAS  Google Scholar 

  42. 42.

    Chen, Y. et al. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2, 1242–1264 (2018).

    CAS  Google Scholar 

  43. 43.

    Pan, Y. et al. Design of single-atom Co–N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018).

    CAS  Google Scholar 

  44. 44.

    Sun, T., Xu, L., Wang, D. & Li, Y. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 12, 2067–2080 (2019).

    CAS  Google Scholar 

  45. 45.

    Gu, J., Hsu, C.-S., Bai, L., Chen, H. M. & Hu, X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).

    CAS  Google Scholar 

  46. 46.

    Reda, T., Plugge, C. M., Abram, N. J. & Hirst, J. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc. Natl Acad. Sci. 105, 10654–10658 (2008).

    CAS  Google Scholar 

  47. 47.

    Diercks, C. S., Liu, Y., Cordova, K. E. & Yaghi, O. M. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater. 17, 301–307 (2018).

    CAS  Google Scholar 

  48. 48.

    Kornienko, N. et al. Metal–organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129–14135 (2015).

    CAS  Google Scholar 

  49. 49.

    Jiao, L., Wang, Y., Jiang, H.-L. & Xu, Q. Metal–organic frameworks as platforms for catalytic applications. Adv. Mater. 30, 1703663 (2017).

    Google Scholar 

  50. 50.

    Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    CAS  Google Scholar 

  51. 51.

    Diercks, C. S. et al. Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 140, 1116–1122 (2018).

    CAS  Google Scholar 

  52. 52.

    De Luna, P. et al. Metal–organic framework thin films on high-curvature nanostructures toward tandem electrocatalysis. ACS Appl. Mater. Interfaces 10, 31225–31232 (2018).

    Google Scholar 

  53. 53.

    Nam, D.-H. et al. Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 140, 11378–11386 (2018).

    CAS  Google Scholar 

  54. 54.

    Coskun, H. et al. Biofunctionalized conductive polymers enable efficient CO2 electroreduction. Sci. Adv. 3, e1700686 (2017).

    Google Scholar 

  55. 55.

    Aydin, R. & Köleli, F. Electrocatalytic conversion of CO2 on a polypyrrole electrode under high pressure in methanol. Synth. Met. 144, 75–80 (2004).

    CAS  Google Scholar 

  56. 56.

    Köleli, F., Röpke, T. & Hamann, C. H. The reduction of CO2 on polyaniline electrode in a membrane cell. Synth. Met. 140, 65–68 (2004).

    Google Scholar 

  57. 57.

    Zhang, S. et al. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 136, 7845–7848 (2014).

    CAS  Google Scholar 

  58. 58.

    Xu, J. et al. Revealing the origin of activity in nitrogen-doped nanocarbons towards electrocatalytic reduction of carbon dioxide. ChemSusChem 9, 1085–1089 (2016).

    CAS  Google Scholar 

  59. 59.

    Wang, H., Chen, Y., Hou, X., Ma, C. & Tan, T. Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution. Green. Chem. 18, 3250–3256 (2016).

    CAS  Google Scholar 

  60. 60.

    Wu, J. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 7, 13869 (2016).

    CAS  Google Scholar 

  61. 61.

    Zou, X. et al. How nitrogen-doped graphene quantum dots catalyze electroreduction of CO2 to hydrocarbons and oxygenates. ACS Catal. 7, 6245–6250 (2017).

    CAS  Google Scholar 

  62. 62.

    Lum, Y. et al. Trace levels of copper in carbon materials show significant electrochemical CO2 reduction activity. ACS Catal. 6, 202–209 (2016).

    CAS  Google Scholar 

  63. 63.

    Gentekos, D. T. & Fors, B. P. Molecular weight distribution shape as a versatile approach to tailoring block copolymer phase behavior. ACS Macro Lett. 7, 677–682 (2018).

    CAS  Google Scholar 

  64. 64.

    Buss, J. A., VanderVelde, D. G. & Agapie, T. Lewis acid enhancement of proton induced CO2 cleavage: bond weakening and ligand residence time effects. J. Am. Chem. Soc. 140, 10121–10125 (2018).

    CAS  Google Scholar 

  65. 65.

    Helm, M. L., Stewart, M. P., Bullock, R. M., DuBois, M. R. & DuBois, D. L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000−1 for H2 production. Science 333, 863–866 (2011).

    CAS  Google Scholar 

  66. 66.

    Zhao, Y., Cao, X. & Jiang, L. Bio-mimic multichannel microtubes by a facile method. J. Am. Chem. Soc. 129, 764–765 (2007).

    CAS  Google Scholar 

  67. 67.

    McGuire, R. Jr et al. Oxygen reduction reactivity of cobalt(ii) hangman porphyrins. Chem. Sci. 1, 411–414 (2010).

    Google Scholar 

  68. 68.

    Huff, C. A. & Sanford, M. S. Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol. J. Am. Chem. Soc. 133, 18122–18125 (2011).

    CAS  Google Scholar 

  69. 69.

    Morales-Guio, C. G. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).

    CAS  Google Scholar 

  70. 70.

    Hulea, V. Toward platform chemicals from bio-based ethylene: heterogeneous catalysts and processes. ACS Catal. 8, 3263–3279 (2018).

    CAS  Google Scholar 

  71. 71.

    Metzger, E. D., Brozek, C. K., Comito, R. J. & Dincă, M. Selective dimerization of ethylene to 1-butene with a porous catalyst. ACS Cent. Sci. 2, 148–153 (2016).

    CAS  Google Scholar 

  72. 72.

    Xiao, H., Cheng, T., Goddard, W. A. & Sundararaman, R. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111). J. Am. Chem. Soc. 138, 483–486 (2016).

    CAS  Google Scholar 

  73. 73.

    Wuttig, A., Yaguchi, M., Motobayashi, K., Osawa, M. & Surendranath, Y. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc. Natl Acad. Sci. USA 113, E4585–E4593 (2016).

    CAS  Google Scholar 

  74. 74.

    Weinberg, D. R. et al. Proton-coupled electron transfer. Chem. Rev. 112, 4016–4093 (2012).

    CAS  Google Scholar 

  75. 75.

    Barile, C. J. et al. Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane. Nat. Mater. 13, 619–623 (2014).

    CAS  Google Scholar 

  76. 76.

    Liu, H. et al. Polydopamine functionalized Cu nanowires for enhanced CO2 electroreduction towards methane. ChemElectroChem 5, 3991–3999 (2018).

    CAS  Google Scholar 

  77. 77.

    Chen, S., Liu, Y. & Chen, J. Heterogeneous electron transfer at nanoscopic electrodes: importance of electronic structures and electric double layers. Chem. Soc. Rev. 43, 5372–5386 (2014).

    CAS  Google Scholar 

  78. 78.

    Raciti, D., Mao, M. & Wang, C. Mass transport modelling for the electroreduction of CO2 on Cu nanowires. Nanotechnology 29, 44001 (2017).

    Google Scholar 

  79. 79.

    Limburg, B., Bouwman, E. & Bonnet, S. Molecular water oxidation catalysts based on transition metals and their decomposition pathways. Coord. Chem. Rev. 256, 1451–1467 (2012).

    CAS  Google Scholar 

  80. 80.

    Marianov, A. N. & Jiang, Y. Covalent ligation of Co molecular catalyst to carbon cloth for efficient electroreduction of CO2 in water. Appl. Catal. B Environ. 244, 881–888 (2019).

    CAS  Google Scholar 

  81. 81.

    Wang, Y., Hou, P., Wang, Z. & Kang, P. Zinc imidazolate metal–organic frameworks (ZIF-8) for electrochemical reduction of CO2 to CO. ChemPhysChem 18, 3142–3147 (2017).

    CAS  Google Scholar 

  82. 82.

    Agapie, T. Selective ethylene oligomerization: recent advances in chromium catalysis and mechanistic investigations. Coord. Chem. Rev. 255, 861–880 (2011).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was in part supported financially by the Natural Sciences and Engineering Research Council of Canada, the Ontario Research Fund: Research Excellence Program (ORF-RE-RE08-034), the Natural Resources Canada Clean Growth Program (CGP-17-0455) and CIFAR Bio-Inspired Solar Energy Program (FL-000719). This work was also supported by the Joint Center for Artificial Photosynthesis, a DOE Energy InnovationHub, supported through the Office of Science of the US Department of Energy under award no. DESC0004993, and was also based on work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under award no. OSR-2018-CPF-3665-03 and OSR-2019-CCF-1972.04. P.D.L. acknowledges the Natural Sciences and Engineering Research Council of Canada for support in the form of a Canada Graduate Scholarship and A.T. acknowledges the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Action H2020-MSCA-IF-2017 (793471).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nam, DH., De Luna, P., Rosas-Hernández, A. et al. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 19, 266–276 (2020). https://doi.org/10.1038/s41563-020-0610-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing