Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution



Sodium ion batteries, because of their sustainability attributes, could be an attractive alternative to Li-ion technology for specific applications. However, it remains challenging to design high energy density and moisture stable Na-based positive electrodes. Here, we report an O3-type NaLi1/3Mn2/3O2 phase showing anionic redox activity, obtained through a ceramic process by carefully adjusting synthesis conditions and stoichiometry. This phase shows a sustained reversible capacity of 190 mAh g−1 that is rooted in cumulative oxygen and manganese redox processes as deduced by combined spectroscopy techniques. Unlike many other anionic redox layered oxides so far reported, O3-NaLi1/3Mn2/3O2 electrodes do not show discernible voltage fade on cycling. This finding, rationalized by density functional theory, sheds light on the role of inter- versus intralayer 3d cationic migration in ruling voltage fade in anionic redox electrodes. Another practical asset of this material stems from its moisture stability, hence facilitating its handling and electrode processing. Overall, this work offers future directions towards designing highly performing sodium electrodes for advanced Na-ion batteries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Structure of the water-washed pristine material.
Fig. 2: Electrochemical behaviour of NaLi1/3Mn2/3O2.
Fig. 3: Structural evolution in the first cycle.
Fig. 4: 6Li and 23Na MAS NMR spectroscopy results.
Fig. 5: Charge compensation mechanism in NaLi1/3Mn2/3O2.
Fig. 6: Voltage fade and cation migration in Li half cells.

Data availability

All relevant data are included in the article and its Supplementary Information.


  1. 1.

    Tarascon, J. M. The Li-ion battery: 25 years of exciting and enriching experiences. Electrochem. Soc. Interface 25, 79–83 (2016).

    CAS  Google Scholar 

  2. 2.

    Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

    CAS  Google Scholar 

  3. 3.

    Hwang, J.-Y., Myung, S.-T. & Sun, Y.-K. Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017).

    CAS  Google Scholar 

  4. 4.

    Rozier, P. & Tarascon, J. M. Review—Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. J. Electrochem. Soc. 162, A2490–A2499 (2015).

    CAS  Google Scholar 

  5. 5.

    Lu, Z. & Dahn, J. R. Understanding the anomalous capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc. 149, A815–A822 (2002).

    CAS  Google Scholar 

  6. 6.

    Thackeray, M. M., Johnson, C. S., Vaughey, J. T., Li, N. & Hackney., S. A. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J. Mater. Chem. 15, 2257–2267 (2005).

    CAS  Google Scholar 

  7. 7.

    Xie, Y., Saubanère, M. & Doublet, M.-L. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ. Sci. 10, 266–274 (2017).

    CAS  Google Scholar 

  8. 8.

    Ben Yahia, M., Vergnet, J., Saubanère, M. & Doublet, M.-L. Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 18, 496–502 (2019).

    Google Scholar 

  9. 9.

    Rozier, P. et al. Anionic redox chemistry in Na-rich Na2Ru1−ySnyO3 positive electrode material for Na-ion batteries. Electrochem. Commun. 53, 29–32 (2015).

    CAS  Google Scholar 

  10. 10.

    Assadi, M. H. N., Okubo, M., Yamada, A. & Tateyama, Y. Oxygen redox promoted by Na excess and covalency in hexagonal and monoclinic Na2−xRuO3 polymorphs. J. Electrochem. Soc. 166, A5343–A5348 (2019).

    CAS  Google Scholar 

  11. 11.

    Mortemard de Boisse, B. et al. Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode. Nat. Commun. 7, 11397 (2016).

    CAS  Google Scholar 

  12. 12.

    Perez, A. J. et al. Strong oxygen participation in the redox governing the structural and electrochemical properties of Na-rich layered oxide Na2IrO3. Chem. Mater. 28, 8278–8288 (2016).

    CAS  Google Scholar 

  13. 13.

    Zhang, X. et al. Manganese-based Na-rich materials boost anionic redox in high-performance layered cathodes for sodium-ion batteries. Adv. Mater. 31, 1807770 (2019).

    Google Scholar 

  14. 14.

    House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in O-redox cathodes. Nature 577, 502–508 (2020).

    CAS  Google Scholar 

  15. 15.

    Maitra, U. et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 10, 288–295 (2018).

    CAS  Google Scholar 

  16. 16.

    Du, K. et al. Exploring reversible oxidation of oxygen in a manganese oxide. Energy Environ. Sci. 9, 2575–2577 (2016).

    CAS  Google Scholar 

  17. 17.

    Rong, X. et al. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition. Joule 3, 503–517 (2019).

    CAS  Google Scholar 

  18. 18.

    Bai, X. et al. Anionic redox activity in a newly Zn-doped sodium layered oxide P2-Na2/3Mn1−yZnyO2 (0 < y < 0.23). Adv. Energy Mater. 8, 1802379 (2018).

    Google Scholar 

  19. 19.

    Bai, X., Iadecola, A. & Tarascon, J.-M. & Rozier, P. Decoupling the effect of vacancies and electropositive cations on the anionic redox processes in Na based P2-type layered oxides.Energy Storage Mater. 31, 146–155 (2020).

    Google Scholar 

  20. 20.

    Ma, C. et al. Exploring oxygen activity in the high energy P2-type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries. J. Am. Chem. Soc. 139, 4835–4845 (2017).

    CAS  Google Scholar 

  21. 21.

    Mariyappan, S., Wang, Q. & Tarascon, J. M. Will sodium layered oxides ever be competitive for sodium ion battery applications? J. Electrochem. Soc. 165, A3714–A3722 (2018).

    CAS  Google Scholar 

  22. 22.

    Kim, D., Cho, M. & Cho, K. Rational design of Na(Li1/3Mn2/3)O2 operated by anionic redox reactions for advanced sodium-ion batteries. Adv. Mater. 29, 1701788 (2017).

    Google Scholar 

  23. 23.

    Perez, A. J., Rousse, G. & Tarascon, J.-M. Structural instability driven by Li/Na competition in Na(Li1/3Ir2/3)O2 cathode material for Li-ion and Na-ion batteries. Inorg. Chem. 58, 15644–15651 (2019).

    CAS  Google Scholar 

  24. 24.

    de la Llave, E. et al. Improving energy density and structural stability of manganese oxide cathodes for Na-Ion batteries by structural lithium substitution. Chem. Mater. 28, 9064–9076 (2016).

    Google Scholar 

  25. 25.

    House, R. A. et al. What triggers oxygen loss in oxygen redox cathode materials? Chem. Mater. 31, 3293–3300 (2019).

    Google Scholar 

  26. 26.

    Grey, C. P. & Lee, Y. J. Lithium MAS NMR studies of cathode materials for lithium-ion batteries. Solid State Sci. 5, 883–894 (2003).

    CAS  Google Scholar 

  27. 27.

    Lee, Y. J. & Grey, C. P. Determining the lithium local environments in the lithium manganates LiZn0.5Mn1.5O4 and Li2MnO3 by analysis of the 6Li MAS NMR spinning sideband manifolds. J. Phys. Chem. B. 106, 3576–3582 (2002).

    CAS  Google Scholar 

  28. 28.

    Shimoda, K. et al. Direct observation of layered-to-spinel phase transformation in Li2MnO3 and the spinel structure stabilised after the activation process. J. Mater. Chem. A. 5, 6695–6707 (2017).

    CAS  Google Scholar 

  29. 29.

    Clément, R. J. et al. Direct evidence for high Na+ mobility and high voltage structural processes in P2-Nax[LiyNizMn1−y−z]O2 (x, y, z ≤ 1) cathodes from solid-state NMR and DFT calculations. J. Mater. Chem. A. 5, 4129–4143 (2017).

    Google Scholar 

  30. 30.

    Cabana, J. et al. Study of the transition metal ordering in layered NaxNix/2Mn1–x/2O2(2/3 ≤ x ≤ 1) and consequences of Na/Li exchange. Inorg. Chem. 52, 8540–8550 (2013).

    CAS  Google Scholar 

  31. 31.

    Assat, G. et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 8, 2219 (2017).

    Google Scholar 

  32. 32.

    Dai, K. et al. High reversibility of lattice oxygen redox quantified by direct bulk probes of both anionic and cationic redox reactions. Joule 3, 518–541 (2019).

    CAS  Google Scholar 

  33. 33.

    Ito, A. et al. In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J. Power Sources 196, 6828–6834 (2011).

    CAS  Google Scholar 

  34. 34.

    Dau, H., Liebisch, P. & Haumann, M. X-ray absorption spectroscopy to analyze nuclear geometry and electronic structure of biological metal centers—potential and questions examined with special focus on the tetra-nuclear manganese complex of oxygenic photosynthesis. Anal. Bioanal. Chem. 376, 562–583 (2003).

    CAS  Google Scholar 

  35. 35.

    Vergnet, J., Saubanère, M., Doublet, M.-L. & Tarascon, J.-M. The structural stability of P2-layered Na-based electrodes during anionic redox. Joule 4, 420–434 (2020).

    CAS  Google Scholar 

  36. 36.

    Berg, E. J. & Novák, P. Recent progress on Li-O2 batteries at PSI. in ECL Annual Report (Paul Scherrer Institut, 2012).

  37. 37.

    Lepoivre, F., Grimaud, A., Larcher, D. & Tarascon, J.-M. Long-time and reliable gas monitoring in Li-O2 batteries via a swagelok derived electrochemical cell. J. Electrochem. Soc. 163, A923–A929 (2016).

    CAS  Google Scholar 

  38. 38.

    FullProf Suite (Full Prof Team, 2006);

  39. 39.

    Casas-Cabanas, M., Reynaud, M., Rikarte, J., Horbach, P. & Rodríguez-Carvajal, J. FAULTS: a program for refinement of structures with extended defects. J. Appl Cryst. 49, 2259–2269 (2016).

    CAS  Google Scholar 

  40. 40.

    Avdeev, M. & Hester, J. R. ECHIDNA: a decade of high-resolution neutron powder diffraction at OPAL. J. Appl Cryst. 51, 1597–1604 (2018).

    CAS  Google Scholar 

  41. 41.

    Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B. 192, 55–69 (1993).

    Google Scholar 

  42. 42.

    Grandinetti, P. J. et al. Pure-absorption-mode lineshapes and sensitivity in two-dimensional dynamic-angle spinning NMR. J. Magn. Reson. A 103, 72–81 (1993).

    CAS  Google Scholar 

  43. 43.

    Massiot, D. et al. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 40, 70–76 (2002).

    CAS  Google Scholar 

  44. 44.

    Rueff, J.-P. et al. The GALAXIES beamline at the SOLEIL synchrotron: inelastic X-ray scattering and photoelectron spectroscopy in the hard X-ray range. J. Synchrotron Rad. 22, 175–179 (2015).

    CAS  Google Scholar 

  45. 45.

    Qiao, R. et al. High-efficiency in situ resonant inelastic X-ray scattering (iRIXS) endstation at the Advanced Light Source. Rev. Sci. Instrum. 88, 033106 (2017).

    Google Scholar 

  46. 46.

    Briois, V. et al. ROCK: the new Quick-EXAFS beamline at SOLEIL. J. Phys. Conf. Ser. 712, 012149 (2016).

    Google Scholar 

  47. 47.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 47, 558–561 (1993).

    CAS  Google Scholar 

  48. 48.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  49. 49.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  50. 50.

    Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B. 57, 1505–1509 (1998).

    CAS  Google Scholar 

Download references


Q.W. thanks Renault S.A.S for PhD funding. J.-M.T. acknowledges the funding from European Research Council (ERC) (FP/2014)/ERC grant/project no. 670116-ARPEMA. A.M.A. and A.V.M. are grateful to Russian Science Foundation for the financial support (grant no. 20-43-01012). Access to the TEM facilities has been granted by Advance Imaging Core Facility of Skoltech. We thank the ROCK beamline at SOLEIL (Gif-sur-Yvette, France) for X-ray spectroscopy experiments (financed by the French National Research Agency (ANR) as a part of the ‘Investissements d’Avenir’ programme, reference ANR-10-EQPX-45; proposal nos. 20171234 and 20190596). HAXPES measurements were performed at GALAXIES beamline at the SOLEIL Synchrotron, France under proposal nos. 20171035 and 20190646. This work used resources of the Advanced Photon Source (11-BM), a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. NPD measurements were performed using the ECHIDNA instrument at ANSTO (Sydney, Australia). We are grateful to A. Iadecola for the help during XAS measurements. We thank S. Trabesinger, D. Giaume, M.F. Lagadec, W. Yin, A. Perez, B. Li, G. Yan, G. Assat and J. Vergnet for fruitful discussions. We acknowledge the staff of the MPBT (physical properties, low temperature) platform of Sorbonne Université for their support.

Author information




Q.W., S.M. and J.-M.T. conceived the idea and designed the experiments. M.D. and B.P. performed NMR measurements. J.C./Y.-S.Y., R.D. and J.W./W.Y. performed and interpreted the XANES/extended X-ray absorption fine structure, HXAPES and mRIXS measurements. M.A. collected the NPD data, G.R. analysed and interpreted the SXRD and NPD patterns and performed the magnetic measurements while A.V.M. and A.M.A. collected and interpreted all the microscopy data. Last, L.Z. performed the OEMS measurements and M.C. supervised the project. M.-L.D. performed the theoretical calculations and contributed to the overall interpretation of the results. J.-M.T., A.M.A., S.M. and Q.W. wrote the paper, with contributions from all authors.

Corresponding author

Correspondence to Jean-Marie Tarascon.

Ethics declarations

Competing interests

The O3-Na(Li1/3Mn2/3)O2 material is patented by Renault (inventors Q.W., M.C., S.M. and J.-M.T.) with patent application number B19-5233FR (pending).

Additional information

Peer review information Nature Materials thanks Naoaki Yabuuchi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–30, Notes 1 and 2, Tables 1–9 and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Mariyappan, S., Rousse, G. et al. Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution. Nat. Mater. 20, 353–361 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing