Stem-cell-based embryo models for fundamental research and translation


Despite its importance, understanding the early phases of human development has been limited by availability of human samples. The recent emergence of stem-cell-derived embryo models, a new field aiming to use stem cells to construct in vitro models to recapitulate snapshots of the development of the mammalian conceptus, opens up exciting opportunities to promote fundamental understanding of human development and advance reproductive and regenerative medicine. This Review provides a summary of the current knowledge of early mammalian development, using mouse and human conceptuses as models, and emphasizes their similarities and critical differences. We then highlight existing embryo models that mimic different aspects of mouse and human development. We further discuss bioengineering tools used for controlling multicellular interactions and self-organization critical for the development of these models. We conclude with a discussion of the important next steps and exciting future opportunities of stem-cell-derived embryo models for fundamental discovery and translation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Overview of mouse and human development from pre-implantation to the onset of gastrulation.
Fig. 2: Mouse and human embryonic and extraembryonic stem cells and their corresponding developmental potencies.
Fig. 3: Existing embryoids that recapitulate different stages of mouse and human development.
Fig. 4: Bioengineering tools to promote multicellular interaction and self-organization in embryoid development.

A. Yoney/E. D. Siggia (a); N. Rivron (b); Y. Zheng (c); M. Simunovic (d)


  1. 1.

    Solnica-Krezel, L. (ed.) Gastrulation: From Embryonic Pattern to Form (Academic Press, 2020).

  2. 2.

    Rossant, J. & Tam, P. P. L. New insights into early human development: lessons for stem cell derivation and differentiation. Cell Stem Cell 20, 18–28 (2017).

    CAS  Google Scholar 

  3. 3.

    Fogarty, N. M. E. et al. Genome editing reveals a role for OCT4 in human embryogenesis. Nature 550, 67–73 (2017).

    CAS  Google Scholar 

  4. 4.

    Ma, H. et al. Correction of a pathogenic gene mutation in human embryos. Nature 548, 413–419 (2017).

    CAS  Google Scholar 

  5. 5.

    Deglincerti, A. et al. Self-organization of the in vitro attached human embryo. Nature 533, 251–254 (2016).

    CAS  Google Scholar 

  6. 6.

    Shahbazi, M. N. et al. Self-organization of the human embryo in the absence of maternal tissues. Nat. Cell Biol. 18, 700–708 (2016).

    CAS  Google Scholar 

  7. 7.

    Xiang, L. et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature 577, 537–542 (2020).

    CAS  Google Scholar 

  8. 8.

    Daley, G. Q. et al. Setting global standards for stem cell research and clinical translation: the 2016 ISSCR guidelines. Stem Cell Rep. 6, 787–797 (2016).

    Google Scholar 

  9. 9.

    Hyun, I., Wilkerson, A. & Johnston, J. Revisit the 14-day rule. Nature 533, 169–171 (2016).

    CAS  Google Scholar 

  10. 10.

    Ma, H. et al. In vitro culture of cynomolgus monkey embryos beyond early gastrulation. Science 366, eaax7890 (2019).

    CAS  Google Scholar 

  11. 11.

    Niu, Y. et al. Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science 366, eaaw5754 (2019).

    CAS  Google Scholar 

  12. 12.

    Nakamura, T. et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62 (2016).

    CAS  Google Scholar 

  13. 13.

    ten Berge, D. et al. Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell 3, 508–518 (2008).

    Google Scholar 

  14. 14.

    Fuchs, C. et al. Self-organization phenomena in embryonic stem cell-derived embryoid bodies: axis formation and breaking of symmetry during cardiomyogenesis. Cells Tissues Organs 195, 377–391 (2012).

    Google Scholar 

  15. 15.

    Meinhardt, A. et al. 3D reconstitution of the patterned neural tube from embryonic stem cells. Stem Cell Rep. 3, 987–999 (2014).

    Google Scholar 

  16. 16.

    Poh, Y.-C. et al. Generation of organized germ layers from a single mouse embryonic stem cell. Nat. Commun. 5, 4000 (2014).

    CAS  Google Scholar 

  17. 17.

    van den Brink, S. C. et al. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 141, 4231–4242 (2014).

    Google Scholar 

  18. 18.

    Warmflash, A. et al. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11, 847–854 (2014).

    CAS  Google Scholar 

  19. 19.

    Harrison, S. E. et al. Assembly of embryonic and extra-embryonic stem cells to mimic embryogenesis in vitro. Science 356, eaal1810 (2017).

    Google Scholar 

  20. 20.

    Shao, Y. et al. A pluripotent stem cell-based model for post-implantation human amniotic sac development. Nat. Commun. 8, 208 (2017).

    Google Scholar 

  21. 21.

    Beccari, L. et al. Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature 562, 272–276 (2018).

    CAS  Google Scholar 

  22. 22.

    Rivron, N. C. et al. Blastocyst-like structures generated solely from stem cells. Nature 557, 106–111 (2018).

    CAS  Google Scholar 

  23. 23.

    Sozen, B. et al. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nat. Cell Biol. 20, 979–989 (2018).

    CAS  Google Scholar 

  24. 24.

    Xue, X. et al. Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nat. Mater. 17, 633–641 (2018).

    CAS  Google Scholar 

  25. 25.

    Haremaki, T. et al. Self-organizing neuruloids model developmental aspects of Huntington’s disease in the ectodermal compartment. Nat. Biotechnol. 37, 1198–1208 (2019).

    CAS  Google Scholar 

  26. 26.

    Simunovic, M. et al. A 3D model of a human epiblast reveals BMP4-driven symmetry breaking. Nat. Cell Biol. 21, 900–910 (2019).

    CAS  Google Scholar 

  27. 27.

    Zheng, Y. et al. Controlled modelling of human epiblast and amnion development using stem cells. Nature 573, 421–425 (2019).

    CAS  Google Scholar 

  28. 28.

    van den Brink, S. C. et al. Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nature 582, 405–409 (2020).

    Google Scholar 

  29. 29.

    Zheng, Y. et al. Dorsal-ventral patterned neural cyst from human pluripotent stem cells in a neurogenic niche. Sci. Adv. 5, eaax5933 (2019).

    CAS  Google Scholar 

  30. 30.

    Li, R. et al. Generation of blastocyst-like structures from mouse embryonic and adult cell cultures. Cell 179, 687–702 (2019).

    CAS  Google Scholar 

  31. 31.

    Rossant, J. & Tam, P. P. L. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136, 701–713 (2009).

    CAS  Google Scholar 

  32. 32.

    Wennekamp, S., Mesecke, S., Nédélec, F. & Hiiragi, T. A self-organization framework for symmetry breaking in the mammalian embryo. Nat. Rev. Mol. Cell Biol. 14, 452–459 (2013).

    Google Scholar 

  33. 33.

    Boroviak, T. & Nichols, J. Primate embryogenesis predicts the hallmarks of human naïve pluripotency. Development 144, 175–186 (2017).

    CAS  Google Scholar 

  34. 34.

    O’Rahilly, R. & Müller, F. Developmental Stages in Human Embryos: Revised and New Measurements. Cells Tissues Organs 192, 73–84 (2010).

    Google Scholar 

  35. 35.

    Tam, P. P. L. & Loebel, D. A. F. Gene function in mouse embryogenesis: get set for gastrulation. Nat. Rev. Genet. 8, 368–381 (2007).

    CAS  Google Scholar 

  36. 36.

    Arnold, S. J. & Robertson, E. J. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10, 91–103 (2009).

    CAS  Google Scholar 

  37. 37.

    Rivera-Pérez, J. A., Mager, J. & Magnuson, T. Dynamic morphogenetic events characterize the mouse visceral endoderm. Dev. Biol. 261, 470–487 (2003).

    Google Scholar 

  38. 38.

    Thomas, P. & Beddington, R. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr. Biol. 6, 1487–1496 (1996).

    CAS  Google Scholar 

  39. 39.

    Yamamoto, M. et al. Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428, 387–392 (2004).

    CAS  Google Scholar 

  40. 40.

    Yoon, Y. et al. Extra-embryonic Wnt3 regulates the establishment of the primitive streak in mice. Dev. Biol. 403, 80–88 (2015).

    CAS  Google Scholar 

  41. 41.

    Tortelote, G. G. et al. Wnt3 function in the epiblast is required for the maintenance but not the initiation of gastrulation in mice. Dev. Biol. 374, 164–173 (2013).

    CAS  Google Scholar 

  42. 42.

    Ohinata, Y. et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436, 207–213 (2005).

    CAS  Google Scholar 

  43. 43.

    Saitou, M., Barton, S. C. & Surani, M. A. A molecular programme for the specification of germ cell fate in mice. Nature 418, 293–300 (2002).

    CAS  Google Scholar 

  44. 44.

    Chen, D. et al. Human primordial germ cells are specified from lineage-primed progenitors. Cell Rep. 29, 4568–4582e4565 (2019).

    CAS  Google Scholar 

  45. 45.

    Sasaki, K. et al. The germ cell fate of cynomolgus monkeys is specified in the nascent amnion. Dev. Cell 39, 169–185 (2016).

    CAS  Google Scholar 

  46. 46.

    Colas, J.-F. & Schoenwolf, G. C. Towards a cellular and molecular understanding of neurulation. Dev. Dynam. 221, 117–145 (2001).

    CAS  Google Scholar 

  47. 47.

    Vijayraghavan, D. S. & Davidson, L. A. Mechanics of neurulation: from classical to current perspectives on the physical mechanics that shape, fold, and form the neural tube. Birth Defects Res. 109, 153–168 (2017).

    CAS  Google Scholar 

  48. 48.

    Ribes, V. & Briscoe, J. Establishing and interpreting graded sonic hedgehog signaling during vertebrate neural tube patterning: The role of negative feedback. Cold Spring Harbor Persp. Biol. 1, a002014 (2009).

    Google Scholar 

  49. 49.

    Briscoe, J. & Small, S. Morphogen rules: Design principles of gradient-mediated embryo patterning. Development 142, 3996–4009 (2015).

    CAS  Google Scholar 

  50. 50.

    Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487–492 (2009).

    CAS  Google Scholar 

  51. 51.

    Smith, A. Formative pluripotency: the executive phase in a developmental continuum. Development 144, 365–373 (2017).

    CAS  Google Scholar 

  52. 52.

    Boroviak, T. et al. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat. Cell Biol. 16, 513–525 (2014).

    Google Scholar 

  53. 53.

    Ying, Q.-L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    CAS  Google Scholar 

  54. 54.

    Brons, I. G. M. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    CAS  Google Scholar 

  55. 55.

    Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007).

    CAS  Google Scholar 

  56. 56.

    Kojima, Y. et al. The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak. Cell Stem Cell 14, 107–120 (2014).

    CAS  Google Scholar 

  57. 57.

    Hayashi, K. et al. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146, 519–532 (2011).

    CAS  Google Scholar 

  58. 58.

    Tanaka, S. et al. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075 (1998).

    CAS  Google Scholar 

  59. 59.

    Niakan, K. K., Schrode, N., Cho, L. T. Y. & Hadjantonakis, A.-K. Derivation of extraembryonic endoderm stem (XEN) cells from mouse embryos and embryonic stem cells. Nat. Protocols 8, 1028–1041 (2013).

    CAS  Google Scholar 

  60. 60.

    Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    CAS  Google Scholar 

  61. 61.

    Guo, H. et al. The DNA methylation landscape of human early embryos. Nature 511, 606–610 (2014).

    CAS  Google Scholar 

  62. 62.

    Yan, L. et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nature Struct. Mol. Biol. 20, 1131–1139 (2013).

    CAS  Google Scholar 

  63. 63.

    Chia, N.-Y. et al. A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature 468, 316–320 (2010).

    CAS  Google Scholar 

  64. 64.

    Irie, N. et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell 160, 253–268 (2015).

    CAS  Google Scholar 

  65. 65.

    Sasaki, K. et al. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 17, 178–194 (2015).

    CAS  Google Scholar 

  66. 66.

    Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).

    CAS  Google Scholar 

  67. 67.

    Guo, G. et al. Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Rep. 6, 437–446 (2016).

    CAS  Google Scholar 

  68. 68.

    Theunissen, T. W. et al. Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell 19, 502–515 (2016).

    CAS  Google Scholar 

  69. 69.

    Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014).

    CAS  Google Scholar 

  70. 70.

    Yamanaka, S. & Blau, H. M. Nuclear reprogramming to a pluripotent state by three approaches. Nature 465, 704–712 (2010).

    CAS  Google Scholar 

  71. 71.

    Choi, J. et al. A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat. Biotechnol. 33, 1173–1181 (2015).

    CAS  Google Scholar 

  72. 72.

    Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).

    CAS  Google Scholar 

  73. 73.

    Yang, Y. et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell 169, 243–257 (2017).

    CAS  Google Scholar 

  74. 74.

    Gao, X. et al. Establishment of porcine and human expanded potential stem cells. Nat. Cell Biol. 21, 687–699 (2019).

    CAS  Google Scholar 

  75. 75.

    Okae, H. et al. Derivation of human trophoblast stem cells. Cell Stem Cell 22, 50–63e56 (2018).

    CAS  Google Scholar 

  76. 76.

    Linneberg-Agerholm, M. et al. Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm. Development 146, dev180620 (2019).

    CAS  Google Scholar 

  77. 77.

    Dong, C. et al. Derivation of trophoblast stem cells from naïve human pluripotent stem cells. eLife 9, e52504 (2019).

    Google Scholar 

  78. 78.

    Guo, G. et al. Trophectoderm potency is retained exclusively in human naïve cells. Preprint at (2020).

  79. 79.

    Posfai, E. et al. Defining totipotency using criteria of increasing stringency. Preprint at (2020).

  80. 80.

    Frias-Aldeguer, J. et al. Embryonic signals perpetuate polar-like trophoblast stem cells and pattern the blastocyst axis. Preprint at (2019).

  81. 81.

    Vrij, E. J. et al. Chemically-defined induction of a primitive endoderm and epiblast-like niche supports post-implantation progression from blastoids. Preprint at (2019).

  82. 82.

    Sozen, B. et al. Self-organization of mouse stem cells into an extended potential blastoid. Dev. Cell 51, 698–712 (2019).

    CAS  Google Scholar 

  83. 83.

    Taniguchi, K. et al. Lumen formation is an intrinsic property of isolated human pluripotent stem cells. Stem Cell Rep. 5, 954–962 (2015).

    CAS  Google Scholar 

  84. 84.

    Shahbazi, M. N. et al. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos. Nature 552, 239–243 (2017).

    CAS  Google Scholar 

  85. 85.

    Minn, K. T. et al. High-resolution transcriptional and morphogenetic profiling of cells from micropatterned human embryonic stem cell gastruloid cultures. Preprint at (2020).

  86. 86.

    Tewary, M. et al. A stepwise model of reaction-diffusion and positional-information governs self-organized human peri-gastrulation-like patterning. Development 144, 4298–4312 (2017).

    CAS  Google Scholar 

  87. 87.

    Etoc, F. et al. A balance between secreted inhibitors and edge sensing controls gastruloid self-organization. Dev. Cell 39, 302–315 (2016).

    CAS  Google Scholar 

  88. 88.

    Heemskerk, I. et al. Rapid changes in morphogen concentration control self-organized patterning in human embryonic stem cells. eLife 8, e40526 (2019).

    Google Scholar 

  89. 89.

    Nemashkalo, A., Ruzo, A., Heemskerk, I. & Warmflash, A. Morphogen and community effects determine cell fates in response to BMP4 signaling in human embryonic stem cells. Development 144, 3042–3053 (2017).

    CAS  Google Scholar 

  90. 90.

    Chhabra, S. et al. Dissecting the dynamics of signaling events in the BMP, WNT, and NODAL cascade during self-organized fate patterning in human gastruloids. PLoS Biol. 17, e3000498 (2019).

    CAS  Google Scholar 

  91. 91.

    Martyn, I., Brivanlou, A. H. & Siggia, E. D. A wave of WNT signaling balanced by secreted inhibitors controls primitive streak formation in micropattern colonies of human embryonic stem cells. Development 146, dev172791 (2019).

    CAS  Google Scholar 

  92. 92.

    Morgani, S. M. et al. Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning. eLife 7, e32839 (2018).

    Google Scholar 

  93. 93.

    Manfrin, A. et al. Engineered signaling centers for the spatially controlled patterning of human pluripotent stem cells. Nat. Methods 16, 640–648 (2019).

    CAS  Google Scholar 

  94. 94.

    Veenvliet, J. V. et al. Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Preprint at (2020).

  95. 95.

    Rossi, G. et al. Embryonic organoids recapitulate early heart organogenesis. Preprint at (2019).

  96. 96.

    Ranga, A. et al. Neural tube morphogenesis in synthetic 3D microenvironments. Proc. Natl Acad. Sci. USA 113, E6831–E6839 (2016).

    CAS  Google Scholar 

  97. 97.

    Britton, G. et al. A novel self-organizing embryonic stem cell system reveals signaling logic underlying the patterning of human ectoderm. Development 146, dev179093 (2019).

    CAS  Google Scholar 

  98. 98.

    McBeath, R. et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    CAS  Google Scholar 

  99. 99.

    Lam, R. H. W., Sun, Y., Chen, W. & Fu, J. Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis. Lab Chip 12, 1865–1873 (2012).

    CAS  Google Scholar 

  100. 100.

    Nelson, C. M. et al. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314, 298–300 (2006).

    CAS  Google Scholar 

  101. 101.

    Habib, S. J. et al. A localized Wnt signal orients asymmetric stem cell division in vitro. Science 339, 1445–1448 (2013).

    CAS  Google Scholar 

  102. 102.

    Repina, N. A. et al. Optogenetic control of Wnt signaling for modeling early embryogenic patterning with human pluripotent stem cells. Preprint at (2019).

  103. 103.

    Cederquist, G. Y. et al. Specification of positional identity in forebrain organoids. Nat. Biotechnol. 37, 436–444 (2019).

    CAS  Google Scholar 

  104. 104.

    Sun, Y., Chen, C. S. & Fu, J. Forcing stem cells to behave: A biophysical perspective of the cellular microenvironment. Annu. Rev. Biophys. 41, 519–542 (2012).

    Google Scholar 

  105. 105.

    Bedzhov, I. & Zernicka-Goetz, M. Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell 156, 1032–1044 (2014).

    CAS  Google Scholar 

  106. 106.

    Tam, P. P. Postimplantation mouse development: whole embryo culture and micro-manipulation. Int. J. Dev. Biol. 42, 895–902 (1998).

    CAS  Google Scholar 

  107. 107.

    Wang, H. et al. A novel model of human implantation: 3D endometrium-like culture system to study attachment of human trophoblast (Jar) cell spheroids. Mol. Human Reprod. 18, 33–43 (2011).

    Google Scholar 

  108. 108.

    Tyser, R. C. V. et al. A spatially resolved single cell atlas of human gastrulation. Preprint at (2020).

  109. 109.

    Rivron, N. et al. Debate ethics of embryo models from stem cells. Nature 564, 183–185 (2018).

    CAS  Google Scholar 

  110. 110.

    Hyun, I. et al. Toward guidelines for research on human embryo models formed from stem cells. Stem Cell Rep. 14, 169–174 (2020).

    CAS  Google Scholar 

  111. 111.

    Petropoulos, S. et al. Single-Cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165, 1012–1026 (2016).

    CAS  Google Scholar 

  112. 112.

    Dobreva, M. P. et al. Amniotic ectoderm expansion in mouse occurs via distinct modes and requires SMAD5-mediated signalling. Development 145, dev157222 (2018).

    Google Scholar 

  113. 113.

    Pereira, P. N. G. et al. Amnion formation in the mouse embryo: the single amniochorionic fold model. BMC Dev. Biol. 11, 48 (2011).

    CAS  Google Scholar 

  114. 114.

    Lawson, K. A. et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13, 424–436 (1999).

    CAS  Google Scholar 

  115. 115.

    Munoz-Sanjuan, I. & Brivanlou, A. H. Neural induction, the default model and embryonic stem cells. Nat. Rev. Neurosci. 3, 271–280 (2002).

    CAS  Google Scholar 

  116. 116.

    Stern, C. D. Neural induction: old problem, new findings, yet more questions. Development 132, 2007–2021 (2005).

    CAS  Google Scholar 

  117. 117.

    Barnat, M. et al. Huntington’s disease alters human neurodevelopment. Science 369, 787–793 (2020).

    CAS  Google Scholar 

Download references


The authors thank S. Vianello for invaluable work on illustrations and N. Rivron, A. Yoney, E.D. Siggia, M. Simunovic and Y. Zheng for microscopic images shown in Fig. 4. J.F.’s research is supported by the University of Michigan Mechanical Engineering Department, the Michigan–Cambridge Research Initiative, the University of Michigan Mcubed Fund, the National Institutes of Health (R21 NS113518 and R21 HD100931), and the National Science Foundation (CMMI 1917304 and CBET 1901718). A.W.’s work is supported by the Rice University, the Welch Foundation (C-2021), the Simons Foundation (511709), the National Institutes of Health (R01 GM126122), and the National Science Foundation (MCB-1553228). M.P.L.’s work is supported by the École Polytechnique Fédérale de Lausanne, the National Center of Competence in Research (NCCR) ‘Bio-Inspired Materials’, and the Swiss National Science Foundation Sinergia Grant (no. 3189956). The authors apologize to colleagues whose work they could not cite owing to space restrictions.

Author information




J.F., A.W. and M.P.L. wrote the manuscript. All authors edited and approved the manuscript.

Corresponding authors

Correspondence to Jianping Fu or Aryeh Warmflash or Matthias P. Lutolf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Warmflash, A. & Lutolf, M.P. Stem-cell-based embryo models for fundamental research and translation. Nat. Mater. (2020).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing